[1] Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697-698 (2001). doi: 10.1038/35089130
[2] Sugioka, K. & Cheng, Y. Ultrafast lasers - reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014). doi: 10.1038/lsa.2014.30
[3] Lin, L., Kollipara, P. S. & Zheng, Y. Digital manufacturing of advanced materials: challenges and perspective. Mater. Today 28, 49-62 (2019). doi: 10.1016/j.mattod.2019.05.022
[4] Malinauskas, M. et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5, e16133 (2016). doi: 10.1038/lsa.2016.133
[5] Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photon. 11, 639-645 (2017). doi: 10.1038/s41566-017-0004-4
[6] You, R. et al. Laser fabrication of graphene-based flexible. Electron. Adv. Mater. n/a, 1901981 (2019).
[7] Ródenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photon. 13, 105-109 (2019). doi: 10.1038/s41566-018-0327-9
[8] Sun, H.-B., Matsuo, S. & Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786-788 (1999). doi: 10.1063/1.123367
[9] Wei, D. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. 12, 596-600 (2018). doi: 10.1038/s41566-018-0240-2
[10] Zhang, J., Gecevičius, M., Beresna, M. & Kazansky, P. G. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901
[11] Dietrich, P. I. et al. 3D‐printed scanning‐probe microscopes with integrated optical actuation and read‐out. Small 16, 1904695 (2020). doi: 10.1002/smll.201904695
[12] Sakakura, M., Lei, Y., Wang, L., Yu, Y.-H. & Kazansky, P. G. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci. Appl. 9, 15 (2020). doi: 10.1038/s41377-020-0250-y
[13] Juodkazis, S. et al. Control over the crystalline state of sapphire. Adv. Mater. 18, 1361-1364 (2006). doi: 10.1002/adma.200501837
[14] Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84-88 (2016). doi: 10.1038/nature18619
[15] Wang, L. et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 6, e17112 (2017). doi: 10.1038/lsa.2017.112
[16] Zhang, Y. et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15-20 (2010). doi: 10.1016/j.nantod.2009.12.009
[17] Huang, X. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 14, 82-88 (2020). doi: 10.1038/s41566-019-0538-8
[18] Chen, N.-K. et al. Directional forces by momentumless excitation and order-to-order transition in peierls-distorted solids: the case of GeTe. Phys. Rev. Lett. 120, 185701 (2018). doi: 10.1103/PhysRevLett.120.185701
[19] Jiang, L., Wang, A.-D., Li, B., Cui, T.-H. & Lu, Y.-F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7, 17134 (2018). doi: 10.1038/lsa.2017.134
[20] Schaffer, C. B., Brodeur, A. & Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784-1794 (2001). doi: 10.1088/0957-0233/12/11/305
[21] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[22] Gailevičius, D. et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz. 4, 647-651 (2019). doi: 10.1039/C8NH00293B
[23] Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019). doi: 10.1038/s41467-019-12360-w
[24] Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910-913 (2009). doi: 10.1126/science.1168996
[25] Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013). doi: 10.1038/ncomms3061
[26] Jersch, J. & Dickmann, K. Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl. Phys. Lett. 68, 868-870 (1996). doi: 10.1063/1.116527
[27] Srituravanich, W. et al. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 3, 733-737 (2008). doi: 10.1038/nnano.2008.303
[28] Ueno, K. et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928-6929 (2008). doi: 10.1021/ja801262r
[29] McLeod, E. & Arnold, C. B. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nanotechnol. 3, 413-417 (2008). doi: 10.1038/nnano.2008.150
[30] Huo, F. et al. Beam pen lithography. Nat. Nanotechnol. 5, 637-640 (2010). doi: 10.1038/nnano.2010.161
[31] Sundaram, S. & Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 1, 217-224 (2002). doi: 10.1038/nmat767
[32] Balling, P. & Schou, J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Rep. Prog. Phys. 76, 036502 (2013). doi: 10.1088/0034-4885/76/3/036502
[33] Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209-1211 (2004). doi: 10.1364/OL.29.001209
[34] Gao, D. et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6, e17039 (2017). doi: 10.1038/lsa.2017.39
[35] Ono, M. et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photon. 14, 37-43 (2020). doi: 10.1038/s41566-019-0547-7
[36] Geng, Q., Wang, D., Chen, P. & Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2
[37] Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light Sci. Appl. 8, 110 (2019). doi: 10.1038/s41377-019-0215-1