[1] |
Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0 |
[2] |
Leith, E. N. & Upatnieks, J. Wavefront reconstruction with diffused illumination and three-dimensional objects. Journal of the Optical Society of America 54, 1295-1301 (1964). doi: 10.1364/JOSA.54.001295 |
[3] |
Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043 |
[4] |
Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179 |
[5] |
Di, J. L. et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting. Optics Communications 282, 3873-3877 (2009). doi: 10.1016/j.optcom.2009.06.049 |
[6] |
Di, J. L. et al. Reconstruction of axisymmetric liquid flow field in digital holographic interferometry. Digital Holography 3D Imag. Mtg., 2015, doi: 10.1364/DH.2015.DTh2A.3. |
[7] |
Sun, W. W. et al. Real-time visualization of Karman vortex street in water flow field by using digital holography. Optics Express 17, 20342-20348 (2009). doi: 10.1364/OE.17.020342 |
[8] |
Wu, B. J. et al. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry. Journal of Applied Physics 114, 193103 (2013). doi: 10.1063/1.4832479 |
[9] |
Zhang, Y. Y. et al. Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry. Optics Express 20, 18415-18421 (2012). doi: 10.1364/OE.20.018415 |
[10] |
Wang, J. et al. Dynamically measuring unstable reaction–diffusion process by using digital holographic interferometry. Optics and Lasers in Engineering 57, 1-5 (2014). doi: 10.1016/j.optlaseng.2014.01.004 |
[11] |
Chen, X. et al. Measurement and reconstruction of three-dimensional configurations of specimen with tiny scattering based on digital holographic tomography. Applied Optics 53, 4044-4048 (2014). doi: 10.1364/AO.53.004044 |
[12] |
Wang, J. et al. Visual measurement of the pulse laser ablation process on liquid surface by using digital holography. Journal of Applied Physics 115, 173106 (2014). doi: 10.1063/1.4874742 |
[13] |
Rajput, S. K. et al. Sound wave detection by common-path digital holography. Optics and Lasers in Engineering 137, 106331 (2021). doi: 10.1016/j.optlaseng.2020.106331 |
[14] |
Nguyen, T. H. et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nature Communications 8, 210 (2017). doi: 10.1038/s41467-017-00190-7 |
[15] |
Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nature Photonics 8, 256-263 (2014). doi: 10.1038/nphoton.2013.350 |
[16] |
Grilli, S. et al. Whole optical wavefields reconstruction by Digital Holography. Optics Express 9, 294-302 (2001). doi: 10.1364/OE.9.000294 |
[17] |
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x |
[18] |
Merola, F. et al. Tomographic flow cytometry by digital holography. Light: Science & Applications 6, e16241 (2017). doi: 10.1038/lsa.2016.241 |
[19] |
Kumar, M. et al. Common-path multimodal three-dimensional fluorescence and phase imaging system. Journal of Biomedical Optics 25, 032010 (2020). doi: 10.1117/1.jbo.25.3.032010 |
[20] |
Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9, 413-468 (1873). doi: 10.1007/bf02956173 |
[21] |
Cotte, Y. et al. Marker-free phase nanoscopy. Nature Photonics 7, 113-117 (2013). doi: 10.1038/nphoton.2012.329 |
[22] |
Simon, B. et al. Tomographic diffractive microscopy with isotropic resolution. Optica 4, 460-463 (2017). doi: 10.1364/OPTICA.4.000460 |
[23] |
Alexandrov, S. A. et al. Synthetic aperture Fourier holographic optical microscopy. Physical Review Letters 97, 168102 (2006). doi: 10.1103/PhysRevLett.97.168102 |
[24] |
Maire, G. et al. Experimental demonstration of quantitative imaging beyond abbe’s limit with optical diffraction tomography. Physical Review Letters 102, 213905 (2009). doi: 10.1103/PhysRevLett.102.213905 |
[25] |
Lai, X. J. et al. Coded aperture structured illumination digital holographic microscopy for superresolution imaging. Optics Letters 43, 1143-1146 (2018). doi: 10.1364/OL.43.001143 |
[26] |
Choi, Y. et al. Synthetic aperture microscopy for high resolution imaging through a turbid medium. Optics Letters 36, 4263-4265 (2011). doi: 10.1364/OL.36.004263 |
[27] |
Micó, V. et al. Resolution enhancement in quantitative phase microscopy. Advances in Optics and Photonics 11, 135-214 (2019). doi: 10.1364/AOP.11.000135 |
[28] |
Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018). doi: 10.1364/OPTICA.5.000704 |
[29] |
Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science & Applications 7, 17141 (2018). doi: 10.1038/lsa.2017.141 |
[30] |
Ren, Z. B, Xu, Z. M. & Lam, E. Y. M. End-to-end deep learning framework for digital holographic reconstruction. Advanced Photonics 1, 016004 (2019). doi: 10.1117/1.ap.1.1.016004 |
[31] |
Wu, Y. C. et al. Deep learning enables high-throughput analysis of particle-aggregation-based biosensors imaged using holography. ACS Photonics 6, 294-301 (2019). doi: 10.1021/acsphotonics.8b01479 |
[32] |
Ren, Z. B., Xu, Z. M. & Lam, E. Y. Learning-based nonparametric autofocusing for digital holography. Optica 5, 337-344 (2018). doi: 10.1364/OPTICA.5.000337 |
[33] |
Pinkard, H. et al. Deep learning for single-shot autofocus microscopy. Optica 6, 794-797 (2019). doi: 10.1364/OPTICA.6.000794 |
[34] |
Dardikman-Yoffe, G. et al. PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells. Biomedical Optics Express 11, 1107-1121 (2020). doi: 10.1364/BOE.379533 |
[35] |
Nguyen, T. et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Optics Express 25, 15043-15057 (2017). doi: 10.1364/OE.25.015043 |
[36] |
Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax spores. Science Advances 3, e1700606 (2017). doi: 10.1126/sciadv.1700606 |
[37] |
Li, Y. et al. Classification of cell morphology with quantitative phase microscopy and machine learning. Optics Express 28, 23916-23927 (2020). doi: 10.1364/OE.397029 |
[38] |
Goswami, N. et al. Rapid SARS-CoV-2 detection and classification using phase imaging with computational specificity. bioRxiv (in the press), doi: 10.1101/2020.12.14.422601. |
[39] |
Rosen, J. & Brooker, G. Digital spatially incoherent Fresnel holography. Optics Letters 32, 912-914 (2007). doi: 10.1364/OL.32.000912 |
[40] |
Rosen, J. & Brooker, G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nature Photonics 2, 190-195 (2008). doi: 10.1038/nphoton.2007.300 |
[41] |
Kelner, R., Katz, B. & Rosen, J. Common path in-line holography using enhanced joint object reference digital interferometers. Optics Express 22, 4995-5009 (2014). doi: 10.1364/OE.22.004995 |
[42] |
Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Optics Letters 22, 1268-1270 (1997). doi: 10.1364/OL.22.001268 |
[43] |
Rodriguez-Zurita, G. et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms. Optics Express 16, 7806-7817 (2008). doi: 10.1364/OE.16.007806 |
[44] |
Gao, P. et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair. Journal of the Optical Society of America A 28, 434-440 (2011). doi: 10.1364/JOSAA.28.000434 |
[45] |
Lin, M. et al. Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator. Applied Optics 51, 2633-2637 (2012). doi: 10.1364/AO.51.002633 |
[46] |
Shan, M. G. et al. Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane. Optics Express 21, 2126-2132 (2013). doi: 10.1364/OE.21.002126 |
[47] |
Anand, A., Chhaniwal, V. & Javidi, B. Tutorial: common path self-referencing digital holographic microscopy. APL Photonics 3, 071101 (2018). doi: 10.1063/1.5027081 |
[48] |
Nehmetallah, G. & Banerjee, P. P. Applications of digital and analog holography in three-dimensional imaging. Advances in Optics and Photonics 4, 472-553 (2012). doi: 10.1364/AOP.4.000472 |
[49] |
Bates, W. J. A wavefront shearing interferometer. Proceedings of the Physical Society 59, 940-950 (1947). doi: 10.1088/0959-5309/59/6/303 |
[50] |
Singh, A. S. G. et al. Lateral shearing digital holographic imaging of small biological specimens. Optics Express 20, 23617-23622 (2012). doi: 10.1364/OE.20.023617 |
[51] |
Di, J. L. et al. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Applied Optics 55, 7287-7293 (2016). doi: 10.1364/AO.55.007287 |
[52] |
Kim, B. M., Park, S. J. & Kim, E. S. Single-shot digital holographic microscopy with a modified lateral-shearing interferometer based on computational telecentricity. Optics Express 25, 6151-6168 (2017). doi: 10.1364/OE.25.006151 |
[53] |
O’Connor, T., Doblas, A. & Javidi, B. Structured illumination in compact and field-portable 3D-printed shearing digital holographic microscopy for resolution enhancement. Optics Letters 44, 2326-2329 (2019). doi: 10.1364/OL.44.002326 |
[54] |
Patorski, K., Zdańkowski, P. & Trusiak, M. Grating deployed total-shear 3-beam interference microscopy with reduced temporal coherence. Optics Express 28, 6893-6908 (2020). doi: 10.1364/OE.383201 |
[55] |
Han, L. et al. Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration. Optics Express 25, 21877-21886 (2017). doi: 10.1364/OE.25.021877 |
[56] |
Primot, J. & Guérineau, N. Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard. Applied Optics 39, 5715-5720 (2000). doi: 10.1364/AO.39.005715 |
[57] |
Hillman, T. R. et al. Near-common-path self-reference quantitative phase microscopy. IEEE Photonics Technology Letters 24, 1812-1814 (2012). doi: 10.1109/LPT.2012.2214768 |
[58] |
Guo, R. L. et al. Quantitative phase imaging by wide-field interferometry with variable shearing distance uncoupled from the off-axis angle. Optics Express 28, 5617-5628 (2020). doi: 10.1364/OE.385437 |
[59] |
Schubert, R. et al. Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens. Biomedical Optics Express 5, 4213-4222 (2014). doi: 10.1364/BOE.5.004213 |
[60] |
Ma, C. J. et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. Optics Express 25, 13659-13667 (2017). doi: 10.1364/OE.25.013659 |
[61] |
Varghese, A., Das, B. & Singh, R. K. Highly stable lens-less digital holography using cyclic lateral shearing interferometer and residual decollimated beam. Optics Communications 422, 3-7 (2018). doi: 10.1016/j.optcom.2018.01.014 |
[62] |
Sun, T. F. et al. Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell. Optics Communications. 426, 77-83 (2018). doi: 10.1016/j.optcom.2018.05.016 |
[63] |
Edwards, C. et al. Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging. Langmuir 31, 11020-11032 (2015). doi: 10.1021/acs.langmuir.5b02148 |
[64] |
Di, J. L. et al. Quantitative and dynamic phase imaging of biological cells by the use of the digital holographic microscopy based on a beam displacer unit. IEEE Photonics Journal 10, 6900510 (2018). doi: 10.1109/jphot.2018.2839878 |
[65] |
Lee, K. & Park, Y. Quantitative phase imaging unit. Optics Letters 39, 3630-3633 (2014). doi: 10.1364/OL.39.003630 |
[66] |
Kim, K. et al. Diffraction optical tomography using a quantitative phase imaging unit. Optics Letters 39, 6935-6938 (2014). doi: 10.1364/OL.39.006935 |
[67] |
Serabyn, E. et al. Compact, lensless digital holographic microscope for remote microbiology. Optics Express 24, 28540-28548 (2016). doi: 10.1364/OE.24.028540 |
[68] |
Ebrahimi, S. et al. Stable and simple quantitative phase-contrast imaging by Fresnel biprism. Applied Physics Letters 112, 113701 (2018). doi: 10.1063/1.5021008 |
[69] |
Popescu, G. et al. Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters 31, 775-777 (2006). doi: 10.1364/OL.31.000775 |
[70] |
Girshovitz, P. & Shaked, N. T. Doubling the field of view in off-axis low-coherence interferometric imaging. Light: Science & Applications 3, e151 (2014). doi: 10.1038/lsa.2014.32 |
[71] |
Blum, O. & Shaked, N. T. Prediction of photothermal phase signatures from arbitrary plasmonic nanoparticles and experimental verification. Light: Science & Applications 4, e322 (2015). doi: 10.1038/lsa.2015.95 |
[72] |
Kumar, M. et al. Single-shot common-path off-axis dual-wavelength digital holographic microscopy. Applied Optics 59, 7144-7152 (2020). doi: 10.1364/AO.395001 |
[73] |
Shaked, N. T. Quantitative phase microscopy of biological samples using a portable interferometer. Optics Letters 37, 2016-2018 (2012). doi: 10.1364/OL.37.002016 |
[74] |
Mahajan, S. et al. Highly stable digital holographic microscope using Sagnac interferometer. Optics Letters 40, 3743-3746 (2015). doi: 10.1364/OL.40.003743 |
[75] |
Singh, V., Tayal, S. & Mehta, D. S. Highly stable wide-field common path digital holographic microscope based on a Fresnel biprism interferometer. OSA Continuum 1, 48-55 (2018). doi: 10.1364/OSAC.1.000048 |
[76] |
Zheng, C. et al. Digital micromirror device-based common-path quantitative phase imaging. Optics Letters 42, 1448-1451 (2017). doi: 10.1364/OL.42.001448 |
[77] |
Vora, P. et al. Wide field of view common-path lateral-shearing digital holographic interference microscope. Journal of Biomedical Optics 22, 126001 (2017). doi: 10.1117/1.jbo.22.12.126001 |
[78] |
Edwards, C. et al. Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]. Applied Optics 53, G33-G43 (2014). doi: 10.1364/AO.53.000G33 |
[79] |
Edwards, C. et al. Optically monitoring and controlling nanoscale topography during semiconductor etching. Light: Science & Applications 1, e30 (2012). doi: 10.1038/lsa.2012.30 |
[80] |
Edwards, C. et al. Digital projection photochemical etching defines gray-scale features. Optics Express 21, 13547-13554 (2013). doi: 10.1364/OE.21.013547 |
[81] |
Bhaduri, B. et al. Diffraction phase microscopy with white light. Optics Letters 37, 1094-1096 (2012). doi: 10.1364/OL.37.001094 |
[82] |
Pham, H. V. et al. Fast phase reconstruction in white light diffraction phase microscopy. Applied Optics 52, A97-A101 (2013). doi: 10.1364/AO.52.000A97 |
[83] |
Zheng, C. et al. Diffraction phase microscopy realized with an automatic digital pinhole. Optics Communications 404, 5-10 (2017). doi: 10.1016/j.optcom.2017.05.038 |
[84] |
Bhaduri, B. et al. Diffraction phase microscopy: principles and applications in materials and life sciences. Advances in Optics and Photonics 6, 57-119 (2014). doi: 10.1364/AOP.6.000057 |
[85] |
Hu, C. F. et al. Endoscopic diffraction phase microscopy. Optics Letters 43, 3373-3376 (2018). doi: 10.1364/OL.43.003373 |
[86] |
Cardenas, N. & Mohanty, S. Decoupling of geometric thickness and refractive index in quantitative phase microscopy. Optics Letters 38, 1007-1009 (2013). doi: 10.1364/OL.38.001007 |
[87] |
Rappaz, B. et al. Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Optics Letters 33, 744-746 (2008). doi: 10.1364/OL.33.000744 |
[88] |
Park, Y. et al. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Optics Letters 34, 3668-3670 (2009). doi: 10.1364/OL.34.003668 |
[89] |
Fu, D. et al. Quantitative dispersion microscopy. Biomedical Optics Express 1, 347-353 (2010). doi: 10.1364/BOE.1.000347 |
[90] |
Pham, H. et al. Spectroscopic diffraction phase microscopy. Optics Letters 37, 3438-3440 (2012). doi: 10.1364/OL.37.003438 |
[91] |
Lee, B. et al. Single grating reflective digital holography with double field of view. IEEE Transactions on Industrial Informatics 15, 6155-6161 (2019). doi: 10.1109/TII.2019.2905646 |
[92] |
Chhaniwal, V. et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror. Optics Letters 37, 5127-5129 (2012). doi: 10.1364/OL.37.005127 |
[93] |
Wang, D. Y. et al. Continuous-wave terahertz self-referencing digital holography based on Fresnel’s mirrors. Optics Letters 45, 913-916 (2020). doi: 10.1364/OL.385943 |
[94] |
Zhang, J. W. et al. Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance. Applied Optics 56, 3223-3228 (2017). doi: 10.1364/AO.56.003223 |
[95] |
Zhang, J. W. et al. Wavelength-multiplexing surface plasmon holographic microscopy. Optics Express 26, 13549-13560 (2018). doi: 10.1364/OE.26.013549 |
[96] |
Qu, W. J. et al. Transmission digital holographic microscopy based on a beam-splitter cube interferometer. Applied Optics 48, 2778-2783 (2009). doi: 10.1364/AO.48.002778 |
[97] |
Zhang, J. W. et al. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection. Optics Express 23, 27328-27334 (2015). doi: 10.1364/OE.23.027328 |
[98] |
Zhang, J. W. et al. Compact surface plasmon holographic microscopy for near-field film mapping. Optics Letters 42, 3462-3465 (2017). doi: 10.1364/OL.42.003462 |
[99] |
Dai, S. Q. et al. Real-time and wide-field mapping of cell-substrate adhesion gap and its evolution via surface plasmon resonance holographic microscopy. Biosensors and Bioelectronics 174, 112826 (2021). doi: 10.1016/j.bios.2020.112826 |