| [1] | Ong, B. H. et al. Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist. Optics Letters 31, 1367-1369 (2006). doi: 10.1364/OL.31.001367 |
| [2] | Jin, C. M. et al. Photothermal convection lithography for rapid and direct assembly of colloidal plasmonic nanoparticles on generic substrates. Small 14, 1803055 (2018). doi: 10.1002/smll.201803055 |
| [3] | Sarangan, A. Nanofabrication: Principles to Laboratory Practice. (Boca Raton: CRC Press, 2016). |
| [4] | Andrews, D. L., Scholes, G. D. & Wiederrecht, G. P. Comprehensive Nanoscience and Technology. (London: Academic Press, 2011). |
| [5] | Crivello, J. V. & Reichmanis, E. Photopolymer materials and processes for advanced technologies. Chemistry of Materials 26, 533-548 (2014). doi: 10.1021/cm402262g |
| [6] | Deng, C. M., Geng, Y. Y. & Wu, Y. Q. New calix[4]arene derivatives as maskless and development-free laser thermal lithography materials for fabricating micro/nano-patterns. Journal of Materials Chemistry C 1, 2470-2476 (2013). doi: 10.1039/c3tc00274h |
| [7] | Zhang, K. et al. A study on one-step laser nanopatterning onto copper–hydrazone-complex thin films and its mechanism. Physical Chemistry Chemical Physics 19, 13272-13280 (2017). doi: 10.1039/C7CP00477J |
| [8] | Tong, Q. C. et al. Direct laser writing of polymeric nanostructures via optically induced local thermal effect. Applied Physics Letters 108, 183104 (2016). doi: 10.1063/1.4948589 |
| [9] | Nguyen, D. T. T. et al. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect. Journal of Applied Physics 119, 013101 (2016). doi: 10.1063/1.4939294 |
| [10] | Zeng, B. J. et al. Metallic resist for phase-change lithography. Scientific Reports 4, 5300 (2014). doi: 10.1038/srep05300 |
| [11] | Ito, E. et al. TeOx-based film for heat-mode inorganic photoresist mastering. Japanese Journal of Applied Physics 44, 3574-3577 (2005). doi: 10.1143/JJAP.44.3574 |
| [12] | Battaglia, J. L., Kusiak, A. & Ghosh, K. The use of photothermal techniques for thermal conductivity and thermal boundary resistance measurements of phase-change chalcogenides alloys. Journal of Applied Physics 129, 055106 (2021). doi: 10.1063/5.0020983 |
| [13] | Xi, H. Z., Liu, Q. & Guo, S. M. Phase change material Ge2Sb1.5Bi0.5Te5 possessed of both positive and negative photoresist characteristics. Materials Letters 80, 72-74 (2012). doi: 10.1016/j.matlet.2012.04.059 |
| [14] | Li, H., Geng, Y. Y. & Wu, Y. Q. Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography. Applied Physics A 107, 221-225 (2012). doi: 10.1007/s00339-011-6746-9 |
| [15] | Wei, T. et al. Investigation of etching selectivity and microstructure of Ag-doped Sb2Te thin film for dry lithography. Semiconductor Science and Technology 37, 035004 (2022). doi: 10.1088/1361-6641/ac3c98 |
| [16] | Howell, S. T. et al. Thermal scanning probe lithography—a review. Microsystems & Nanoengineering 6, 21 (2020). |
| [17] | Qin, L. et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Letters 20, 4916-4923 (2020). doi: 10.1021/acs.nanolett.0c00978 |
| [18] | Murrey, T. L. et al. Approaching rapid, highresolution, large-area patterning of semiconducting polymers using projection photothermal lithography. Advanced Materials Technologies 7, 2100812 (2022). doi: 10.1002/admt.202100812 |
| [19] | Rayner, D. M., Naumov, A. & Corkum, P. B. Ultrashort pulse non-linear optical absorption in transparent media. Optics Express 13, 3208-3217 (2005). doi: 10.1364/OPEX.13.003208 |
| [20] | Liu, S., Wei, J. S. & Gan, F. X. Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films. Journal of Applied Physics 110, 033503 (2011). doi: 10.1063/1.3614501 |
| [21] | Katzenmeyer, A. M. et al. Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques. Proceedings of SPIE – The International Society for Optical Engineering 11324, 113240Z (2020). |
| [22] | Jiang, Y. et al. Thermal scanning probe lithography using Parylene C as thermal resist. Micro & Nano Letters 17, 96-99 (2022). |
| [23] | Pham, N. P., Burghartz, J. N. & Sarro, P. M. Spray coating of photoresist for pattern transfer on high topography surfaces. Journal of Micromechanics and Microengineering 15, 691-697 (2005). doi: 10.1088/0960-1317/15/4/003 |
| [24] | Song, S. M. et al. Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17, 21443-21454 (2023). doi: 10.1021/acsnano.3c06207 |
| [25] | Sharma, E. et al. Evolution in lithography techniques: microlithography to nanolithography. Nanomaterials 12, 2754 (2022). doi: 10.3390/nano12162754 |
| [26] | Lee, C. H., Jiang, K. & Davies, G. J. Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents. Materials Characterization 58, 603-609 (2007). doi: 10.1016/j.matchar.2006.07.005 |
| [27] | Mack, C. A. Line-edge roughness and the ultimate limits of lithography. Advances in Resist Materials and Processing Technology XXVII, Proc. SPIE 7639, 763931 (2010). doi: 10.1117/12.848236 |
| [28] | Chen, X. W. et al. Ge2Sb2Te5 thin film as a promising heat-mode resist for high-resolution direct laser writing lithography. Physica Status Solidi (RRL) – Rapid Research Letters 17, 2300262 (2023). doi: 10.1002/pssr.202300262 |
| [29] | Solomonov, A. I. et al. Ge-Sb-Te based metasurface with angle-tunable switchable response in the telecom bands. Physical Review B 108, 085127 (2023). doi: 10.1103/PhysRevB.108.085127 |
| [30] | Mack, C. A. Field Guide to Optical Lithography. (SPIE Press, 2006). |
| [31] | Klemm, A. et al. Phase-shift lithography for sub-wavelength patterns of varying aspect ratios. Microelectronic Engineering 130, 57-61 (2014). doi: 10.1016/j.mee.2014.09.022 |
| [32] | Wei, J. S. et al. High-speed maskless nanolithography with visible light based on photothermal localization. Scientific Reports 7, 43892 (2017). doi: 10.1038/srep43892 |
| [33] | Huang, Y. H. & Hsieh, T. E. Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory. International Journal of Thermal Sciences 87, 207-214 (2015). doi: 10.1016/j.ijthermalsci.2014.08.004 |
| [34] | Guo, P. F. et al. Tungsten-doped Ge2Sb2Te5 phase change material for high-speed optical switching devices. Applied Physics Letters 116, 131901 (2020). doi: 10.1063/1.5142552 |
| [35] | Delaney, M. et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Advanced Functional Materials 30, 2002447 (2020). doi: 10.1002/adfm.202002447 |
| [36] | Lawandi, R. G. et al. VO2 wire grid polarizers for MWIR applications. Journal of the Optical Society of America B 41, 744-749 (2024). doi: 10.1364/JOSAB.512439 |
| [37] | Sevison, G. A. et al. Phase change dynamics and twodimensional 4-bit memory in Ge2Sb2Te5 via telecomband encoding. ACS Photonics 7, 480-487 (2020). doi: 10.1021/acsphotonics.9b01456 |
| [38] | Kiselev, A. V. et al. Dynamics of reversible optical properties switching of Ge2Sb2Te5 thin films at laserinduced phase transitions. Optics & Laser Technology 147, 107701 (2022). |
| [39] | Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews 7, 22-44 (2013). |
| [40] | Alam, M. S. et al. Fast cycling speed with multimillion cycling endurance of ultra-low loss phase change material (Sb2Se3) by engineered laser pulse irradiation. Advanced Functional Materials 34, 2310306 (2024). doi: 10.1002/adfm.202310306 |
| [41] | Shiman, O. et al. Selective wet-etching of amorphous/crystallized Sb-Se thin films. Latvian Journal of Physics and Technical Sciences 49, 45-50 (2012). doi: 10.2478/v10047-012-0010-8 |
| [42] | Deng, C. M., Geng, Y. Y. & Wu, Y. Q. Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium. Applied Physics A 104, 1091-1097 (2011). doi: 10.1007/s00339-011-6377-1 |
| [43] | Wang, L. Y. et al. Basic wet-etching solutions for Ge2Sb2Te5 phase change material. Journal of The Electrochemical Society 157, H470-H473 (2010). doi: 10.1149/1.3298695 |
| [44] | Morden, D. et al. Tunable angle-independent mid-infrared optical filters using GST-based micro resonator arrays. Optical Materials Express 12, 1043-1054 (2022). doi: 10.1364/OME.447594 |
| [45] | Lawandi, R., Heenkenda, R. & Sarangan, A. Switchable distributed Bragg reflector using GST phase change material. Optics Letters 47, 1937-1940 (2022). doi: 10.1364/OL.455220 |
| [46] | Wagner, A. et al. Focused ion beam metrology. MRS Online Proceedings Library 396, 675 (1995). doi: 10.1557/PROC-396-675 |
| [47] | Yeung, M. S. Modeling high numerical aperture optical lithography. Optical/Laser Microlithography, Proc. SPIE 922, 149-167 (1988). doi: 10.1117/12.968409 |
| [48] | Kumar, S. & Sharma, V. Enhancing the surface morphology for improved phase change mechanism by Sm doping in Ge2Sb2Te5 thin films. Applied Physics A 127, 213 (2021). doi: 10.1007/s00339-021-04377-0 |
| [49] | Li, M., Kang, X. K. & Zang, K. Y. Stitching process development on 300mm wafer CMOS BEOL for high performance chip application. In 2022 China Semiconductor Technology International Conference (CSTIC). Shanghai, China: IEEE, 2022, 1–3. http://dx.doi.org/10.1109/CSTIC55103.2022.9856864. |
| [50] | Pu, H. et al. Novel methods for stitching and overlay corrections. Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV, Proc. SPIE 11611, 116111I (2021). |
| [51] | Nakhoul, A. & Colombier, J. P. Beyond the microscale: advances in surface nanopatterning by laser-driven self-organization. Laser & Photonics Reviews 18, 2300991 (2024). |
| [52] | Li, Z. Z. et al. Super-stealth dicing of transparent solids with nanometric precision. Nature Photonics 18, 799-808 (2024). doi: 10.1038/s41566-024-01437-8 |
| [53] | Asgari Sabet, R. et al. Laser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding. Nature Communications 15, 5786 (2024). doi: 10.1038/s41467-024-49303-z |