[1] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847
[2] Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628
[3] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials 11, 426-431 (2012). doi: 10.1038/nmat3292
[4] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nature Materials 13, 139-150 (2014). doi: 10.1038/nmat3839
[5] Maier, S. A. Plasmonics: Fundamentals and Applications. (New York: Springer, 2007).
[6] Geng, J. et al. Controllable generation of large-scale highly regular gratings on Si films. Light: Advanced Manufacturing 2, 274-282 (2021).
[7] Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Materials Today 21, 8-21 (2018). doi: 10.1016/j.mattod.2017.06.007
[8] Wang, J. Y. et al. Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale 10, 8240-8245 (2018). doi: 10.1039/C7NR07821H
[9] Wang, J. Y. et al. Strong second-harmonic generation from Au-Al heterodimers. Nanoscale 11, 23475-23481 (2019). doi: 10.1039/C9NR07644A
[10] Zhao, Y., Yang, Y. M. & Sun, H. B. Nonlinear meta-optics towards applications. PhotoniX 2, 3 (2021). doi: 10.1186/s43074-021-00025-1
[11] Goi, E. et al. Perspective on photonic memristive neuromorphic computing. PhotoniX 1, 3 (2020). doi: 10.1186/s43074-020-0001-6
[12] Kumar, S., Williams, R. S. & Wang, Z. W. Third-order nanocircuit elements for neuromorphic engineering. Nature 585, 518-523 (2020). doi: 10.1038/s41586-020-2735-5
[13] Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics 15, 102-114 (2021). doi: 10.1038/s41566-020-00754-y
[14] Kang, Z. et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Applied Physics Letters 103, 041105 (2013). doi: 10.1063/1.4816516
[15] Wang, J. Y. et al. Saturable plasmonic metasurfaces for laser mode locking. Light: Science & Applications 9, 50 (2020).
[16] Zhao, D. et al. Plasmonic saturable absorbers. Advanced Photonics Research 2, 2100003 (2021). doi: 10.1002/adpr.202100003
[17] Wang, X. D. et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Applied Physics Letters 105, 161107 (2014). doi: 10.1063/1.4899133
[18] Shu, Y. Q. et al. Gold nanorods as saturable absorber for harmonic soliton molecules generation. Frontiers in Chemistry 7, 715 (2019). doi: 10.3389/fchem.2019.00715
[19] Han, A. P. et al. Nanopatterning on nonplanar and fragile substrates with ice resists. Nano Letters 12, 1018-1021 (2012). doi: 10.1021/nl204198w
[20] Hong, Y. et al. Three-dimensional in situ electron-beam lithography using water ice. Nano Letters 18, 5036-5041 (2018). doi: 10.1021/acs.nanolett.8b01857
[21] Principe, M. et al. Optical fiber meta-tips. Light: Science & Applications 6, e16226 (2017).
[22] Xiong, Y. F. & Xu, F. Multifunctional integration on optical fiber tips: challenges and opportunities. Advanced Photonics 2, 064001 (2020).
[23] Plidschun, M. et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light: Science & Applications 10, 57 (2021).
[24] Umakoshi, T., Saito, Y. & Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 8, 5634-5640 (2016). doi: 10.1039/C5NR08548A
[25] Consales, M. et al. Metasurface-enhanced lab-on-fiber biosensors. Laser & Photonics Reviews 14, 2000180 (2020).
[26] Hong, Y. et al. Solvent-free nanofabrication based on ice-assisted electron-beam lithography. Nano Letters 20, 8841-8846 (2020). doi: 10.1021/acs.nanolett.0c03809
[27] Zou, M. Q. et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light: Science & Applications 10, 171 (2021).
[28] Savinov, V. & Zheludev, N. I. High-quality metamaterial dispersive grating on the facet of an optical fiber. Applied Physics Letters 111, 091106 (2017). doi: 10.1063/1.4990766
[29] Martins, T. et al. Fiber-integrated phase change metasurfaces with switchable group delay dispersion. Advanced Optical Materials 9, 2100803 (2021). doi: 10.1002/adom.202100803
[30] Consales, M. et al. Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6, 3163-3170 (2012). doi: 10.1021/nn204953e
[31] Wang, N. et al. Boosting light collection efficiency of optical fibers using metallic nanostructures. ACS Photonics 6, 691-698 (2019). doi: 10.1021/acsphotonics.8b01560
[32] Yermakov, O. et al. Nanostructure-empowered efficient coupling of light into optical fibers at extraordinarily large angles. ACS Photonics 7, 2834-2841 (2020). doi: 10.1021/acsphotonics.0c01078
[33] Xu, J. et al. Second harmonic generation in amorphous silicon-on-silica metamaterial. APL Photonics 6, 036110 (2021). doi: 10.1063/5.0037428
[34] Horneber, A. et al. Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers. Physical Chemistry Chemical Physics 15, 8031-8034 (2013). doi: 10.1039/c3cp43349h
[35] Wang, J. Y. et al. Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au-Al nanoantennas. Journal of Chemical Physics 154, 074701 (2021). doi: 10.1063/5.0032611
[36] Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176-2179 (2002). doi: 10.1126/science.1077229
[37] Fu, B. et al. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE Journal of Selected Topics in Quantum Electronics 20, 1100705 (2014).
[38] Agrawal, G. P. Fiber-Optic Communication Systems. 4th edn. (New York: Wiley, 2010).
[39] Kelly, S. M. J. Characteristic sideband instability of periodically amplified average soliton. Electronics Letters 28, 806-807 (1992). doi: 10.1049/el:19920508
[40] Zhao, L. M. et al. Soliton trapping in fiber lasers. Optics Express 16, 9528-9533 (2008). doi: 10.1364/OE.16.009528
[41] Wang, Y. T. et al. Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation. Photonics Research 9, 08001531 (2021).
[42] Li, G. M. et al. Passive mode locking resulting from weak polarization dependence based on evanescent field interaction with a monolayer graphene absorber. Applied Optics 57, 3507-3510 (2018). doi: 10.1364/AO.57.003507
[43] Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831-838 (2003). doi: 10.1038/nature01938
[44] Liu, W. J. et al. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 9, 5806-5811 (2017). doi: 10.1039/C7NR00971B
[45] Del Fatti, N. et al. Nonequilibrium electron dynamics in noble metals. Physical Review B 61, 16956-16966 (2000). doi: 10.1103/PhysRevB.61.16956
[46] Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface Plasmon resonance. Physical Review Letters 107, 057402 (2011). doi: 10.1103/PhysRevLett.107.057402
[47] Boguslawski, J. et al. Graphene oxide paper as a saturable absorber for Er- and tm-doped fiber lasers. Photonics Research 3, 119-124 (2015). doi: 10.1364/PRJ.3.000119
[48] Wang, F. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotechnology 3, 738-742 (2008). doi: 10.1038/nnano.2008.312
[49] Sotor, J. et al. Black phosphorus saturable absorber for ultrashort pulse generation. Applied Physics Letters 107, 051108 (2015). doi: 10.1063/1.4927673
[50] Wu, K. et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Optics Letters 40, 1374-1377 (2015). doi: 10.1364/OL.40.001374
[51] Wu, K. et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers. Optics Express 23, 11453-11461 (2015). doi: 10.1364/OE.23.011453
[52] Koo, J. et al. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Optics Express 24, 10575-10589 (2016). doi: 10.1364/OE.24.010575
[53] Jhon, Y. I. et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Advanced Materials 29, 1702496 (2017). doi: 10.1002/adma.201702496
[54] Boguslawski, J. et al. Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3 topological insulator. Laser Physics 24, 105111 (2014). doi: 10.1088/1054-660X/24/10/105111
[55] Li, K. X. et al. L-band femtosecond fibre laser based on Bi2Se3 topological insulator. Laser Physics Letters 12, 105103 (2015). doi: 10.1088/1612-2011/12/10/105103
[56] Cheng, L. et al. Linear and nonlinear optical properties modulation of Sb2Te3/GeTe bilayer film as a promising saturable absorber. Results in Physics 13, 102282 (2019). doi: 10.1016/j.rinp.2019.102282
[57] Pareek, V. et al. Synthesis and applications of noble metal nanoparticles: a review. Advanced Science,Engineering and Medicine 9, 527-544 (2017). doi: 10.1166/asem.2017.2027
[58] Guerrisi, M., Rosei, R. & Winsemius, P. Splitting of the interband absorption edge in Au. Physical Review B 12, 557-563 (1975). doi: 10.1103/PhysRevB.12.557
[59] Boyd, G. T., Yu, Z. H. & Shen, Y. R. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Physical Review B 33, 7923-7936 (1986). doi: 10.1103/PhysRevB.33.7923
[60] Imura, K., Nagahara, T. & Okamoto, H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of Plasmon modes. The Journal of Physical Chemistry B 109, 13214-13220 (2005). doi: 10.1021/jp051631o
[61] Hohlfeld, J. et al. Electron and lattice dynamics following optical excitation of metals. Chemical Physics 251, 237-258 (2000). doi: 10.1016/S0301-0104(99)00330-4
[62] Wang, J. Y. et al. Direct comparison of second harmonic generation and two-photon photoluminescence from single connected gold nanodimers. The Journal of Physical Chemistry C 120, 17699-17710 (2016). doi: 10.1021/acs.jpcc.6b04850
[63] Schröder, W. U. et al. Effect of Pauli blocking on exchange and dissipation mechanisms operating in heavy-ion reactions. Physical Review Letters 44, 308-312 (1980). doi: 10.1103/PhysRevLett.44.308
[64] Boyd, R. W. Nonlinear Optics. 3rd edn. (New York: Academic Press, 2008).
[65] Thyagarajan, K., Butet, J. & Martin, O. J. F. Augmenting second harmonic generation using fano resonances in plasmonic systems. Nano Letters 13, 1847-1851 (2013). doi: 10.1021/nl400636z
[66] Ren, M. L. et al. Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Optics Express 22, 28653-28661 (2014). doi: 10.1364/OE.22.028653
[67] Hache, F. et al. The optical Kerr effect in small metal particles and metal colloids: the case of gold. Applied Physics A 47, 347-357 (1988). doi: 10.1007/BF00615498