[1] |
Zhang, L., Tang, Y. & Tong, L. Micro-/nanofiber optics: merging photonics and material science on nanoscale for advanced sensing technology. iScience 23, 100810 (2020). doi: 10.1016/j.isci.2019.100810 |
[2] |
Cao, Z. et al. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light 8, 107 (2019). doi: 10.1038/s41377-019-0213-3 |
[3] |
Mauranyapin, N. P. et al. Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics 11, 477–481 (2017). doi: 10.1038/nphoton.2017.99 |
[4] |
Hoa, X. D., Kirk, A. G. & Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23, 151–160 (2007). doi: 10.1016/j.bios.2007.07.001 |
[5] |
Stockman, M. I. Nanoplasmonic sensing and detection. Science 348, 287–288 (2015). doi: 10.1126/science.aaa6805 |
[6] |
Frustaci, S. & Vollmer, F. Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics. Curr. Opin. Chem. Biol. 51, 66–73 (2019). doi: 10.1016/j.cbpa.2019.05.003 |
[7] |
Zhou, J. J. et al. Single-particle spectroscopy for functional nanomaterials. Nature 579, 41–50 (2020). doi: 10.1038/s41586-020-2048-8 |
[8] |
Gopinath, A. et al. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535, 401–405 (2016). doi: 10.1038/nature18287 |
[9] |
Jiang, X. F. et al. Whispering-gallery sensors. Matter 3, 371–392 (2020). doi: 10.1016/j.matt.2020.07.008 |
[10] |
Fan, X. D. et al. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620, 8–26 (2008). doi: 10.1016/j.aca.2008.05.022 |
[11] |
Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 7, 168–240 (2015). doi: 10.1364/AOP.7.000168 |
[12] |
Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities. Adv. Mater. 29, 1604920 (2017). doi: 10.1002/adma.201604920 |
[13] |
Tang, S. J. et al. Laser particles with omnidirectional emission for cell tracking. Light 10, 23 (2021). doi: 10.1038/s41377-021-00466-0 |
[14] |
Svela, A. O. et al. Coherent suppression of backscattering in optical microresonators. Light 9, 204 (2020). doi: 10.1038/s41377-020-00440-2 |
[15] |
Song, Q. H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci. China 62, 074231 (2019). |
[16] |
Liao, J. & Yang, L. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light 10, 32 (2021). doi: 10.1038/s41377-021-00472-2 |
[17] |
Liu, W. J. et al. Nonlinear sensing with whispering-gallery mode microcavities: from label-free detection to spectral fingerprinting. Nano Lett. 21, 1566–1575 (2021). doi: 10.1021/acs.nanolett.0c04090 |
[18] |
Toropov, N. et al. Review of biosensing with whispering-gallery mode lasers. Light 10, 42 (2021). doi: 10.1038/s41377-021-00471-3 |
[19] |
Baaske, M. D. & Vollmer, F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photonics 10, 733–739 (2016). doi: 10.1038/nphoton.2016.177 |
[20] |
Yu, W. Y. et al. Cavity optomechanical spring sensing of single molecules. Nat. Commun. 7, 12311 (2016). doi: 10.1038/ncomms12311 |
[21] |
Su, J., Goldberg, A. F. G. & Stoltz, B. M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light 5, e16001 (2016). doi: 10.1038/lsa.2016.1 |
[22] |
Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002). doi: 10.1063/1.1482797 |
[23] |
Xu, X. Y. et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light 7, 62 (2018). doi: 10.1038/s41377-018-0063-4 |
[24] |
Huang, Q. L. et al. Stretchable PEG-DA hydrogel-based whispering-gallery-mode microlaser with humidity responsiveness. J. Lightwave Technol. 36, 819–824 (2018). doi: 10.1109/JLT.2017.2762696 |
[25] |
Li, B. B. et al. Quantum enhanced optomechanical magnetometry. Optica 5, 850–856 (2018). doi: 10.1364/OPTICA.5.000850 |
[26] |
Sui, G. R. et al. Microcavity-integrated graphene waveguide: a reconfigurable electro-optical attenuator and switch. Sci. Rep. 8, 12445 (2018). doi: 10.1038/s41598-018-30396-8 |
[27] |
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1 |
[28] |
Yuk, H., Lu, B. Y. & Zhao, X. H. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019). doi: 10.1039/C8CS00595H |
[29] |
Qiu, Y. & Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001). doi: 10.1016/S0169-409X(01)00203-4 |
[30] |
Zhu, D. Y. et al. Repeatedly intrinsic self-healing of millimeter-scale wounds in polymer through rapid volume expansion aided host-guest interaction. ACS Appl. Mater. Interfaces 12, 22534–22542 (2020). doi: 10.1021/acsami.0c03523 |
[31] |
Wang, Y. et al. Chiral polypeptide thermogels induce controlled inflammatory response as potential immunoadjuvants. ACS Appl. Mater. Interfaces 11, 8725–8730 (2019). doi: 10.1021/acsami.9b01872 |
[32] |
Jochum, F. D. & Theato, P. Temperature-and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013). doi: 10.1039/C2CS35191A |
[33] |
Cheng, H., Shen, L. & Wu, C. LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules 39, 2325–2329 (2006). doi: 10.1021/ma052561m |
[34] |
Wu, C. & Wang, X. H. Globule-to-coil transition of a single homopolymer chain in solution. Phys. Rev. Lett. 80, 4092–4094 (1998). doi: 10.1103/PhysRevLett.80.4092 |
[35] |
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939 |
[36] |
Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61 (2015). |
[37] |
Ward, J. & Benson, O. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 5, 553–570 (2011). doi: 10.1002/lpor.201000025 |
[38] |
Curcio, J. A. & Petty, C. C. The near infrared absorption spectrum of liquid water. J. Optical Soc. Am. 41, 302–304 (1951). doi: 10.1364/JOSA.41.000302 |
[39] |
Ward, J. M. et al. Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica 5, 674–677 (2018). doi: 10.1364/OPTICA.5.000674 |
[40] |
Graziano, G. On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions. Int. J. Biol. Macromol. 27, 89–97 (2000). doi: 10.1016/S0141-8130(99)00122-1 |
[41] |
Chen, Z. M. et al. Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli effect. Opt. Express 27, 36932–36940 (2019). doi: 10.1364/OE.27.036932 |
[42] |
Lu, Y. J. et al. Origin of hysteresis observed in association and dissociation of polymer chains in water. Phys. Chem. Chem. Phys. 12, 3188–3194 (2010). doi: 10.1039/b918969f |
[43] |
Sun, B. J. et al. A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly(N-isopropylacrylamide) aqueous solution. Macromolecules 41, 1512–1520 (2008). doi: 10.1021/ma702062h |
[44] |
Ding, Y. W., Ye, X. D. & Zhang, G. Z. Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water. Macromolecules 38, 904–908 (2005). doi: 10.1021/ma048460q |
[45] |
Gomez-Galvan, F. & Mercado-Uribe, H. The phase transition of poly (N-isopropylacrylamide): the effect of aging. Phase Transit. 87, 336–343 (2014). doi: 10.1080/01411594.2013.837466 |
[46] |
Grinberg, N. V. et al. Studies of the thermal volume transition of poly(N-isopropylacrylamide) hydrogels by high-sensitivity differential scanning microcalorimetry. 1. Dyn. Eff. Macromol. 32, 1471–1475 (1999). |
[47] |
Higham, A. K. et al. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter 10, 4990–5002 (2014). doi: 10.1039/C4SM00411F |
[48] |
Wu, C. & Zhou, S. Q. First observation of the molten globule state of a single homopolymer chain. Phys. Rev. Lett. 77, 3053–3055 (1996). doi: 10.1103/PhysRevLett.77.3053 |
[49] |
Rios, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725–732 (2015). doi: 10.1038/nphoton.2015.182 |
[50] |
Qu, Y. R. et al. Thermal camouflage based on the phase-changing material GST. Light 7, 26 (2018). doi: 10.1038/s41377-018-0038-5 |
[51] |
Du, K. K. et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light 6, e16194 (2017). doi: 10.1038/lsa.2016.194 |
[52] |
Moss, B. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021). doi: 10.1038/s41563-020-00868-2 |
[53] |
Yoon, H. et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat. Mater. 15, 1113–1119 (2016). doi: 10.1038/nmat4692 |
[54] |
Lopez, C. G. & Richtering, W. Does Flory–Rehner theory quantitatively describe the swelling of thermoresponsive microgels? Soft Matter 13, 8271–8280 (2017). doi: 10.1039/C7SM01274H |
[55] |
Hirotsu, S. Static and time-dependent properties of polymer gels around the volume phase transition. Phase Transit. 47, 183–240 (1994). doi: 10.1080/01411599408200347 |
[56] |
Lopez-Leon, T. & Fernandez-Nieves, A. Macroscopically probing the entropic influence of ions: deswelling neutral microgels with salt. Phys. Rev. E 75, 011801 (2007). doi: 10.1103/PhysRevE.75.011801 |
[57] |
Hirotsu, S. et al. Brillouin scattering study of the volume phase transition in poly-N-isopropylacrylamide gels. J. Phys. Soc. Jpn. 64, 2898–2907 (1995). doi: 10.1143/JPSJ.64.2898 |