[1] Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135-1184 (2006). doi: 10.1103/RevModPhys.78.1135
[2] Yoon, Oh. D. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2017).
[3] Safioui, J. et al. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt. Express 22, 3089-3097 (2014). doi: 10.1364/OE.22.003089
[4] Liou, L. W., Cao, X. D., McKinstrie, C. J. & Agrawal, G. P. Spatiotemporal instabilities in dispersive nonlinear media. Phys. Rev. A 46, 4202-4208 (1992). doi: 10.1103/PhysRevA.46.4202
[5] Ryan, A. T. & Agrawal, G. P. Spatiotemporal coupling in dispersive nonlinear planar waveguides. J. Opt. Soc. Am. B 12, 2382-2389 (1995). doi: 10.1364/JOSAB.12.002382
[6] Šuminas, R., Tamošauskas, G., Valiulis, G. & Dubietis, A. Spatiotemporal light bullets and supercontinuum generation in β-BBO crystal with competing quadratic and cubic nonlinearities. Opt. Lett. 41, 2097-2100 (2016). doi: 10.1364/OL.41.002097
[7] Gorbach, A. V. et al. Spatiotemporal nonlinear optics in arrays of subwavelength waveguides. Phys. Rev. A 82, 041802 (2010). doi: 10.1103/PhysRevA.82.041802
[8] Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47-189 (2007). doi: 10.1016/j.physrep.2006.12.005
[9] Nibbering, E. T. J. et al. Conical emission from self-guided femtosecond pulses in air. Opt. Lett. 21, 62-65 (1996). doi: 10.1364/OL.21.000062
[10] Alfano, R. R. & Shapiro, S. L. Emission in the region 4000 to 7000 Å Via four-photon coupling in glass. Phys. Rev. Lett. 24, 584-587 (1970). doi: 10.1103/PhysRevLett.24.584
[11] Faccio, D. et al. Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys. Rev. Lett. 96, 193901 (2006).
[12] Faccio, D. et al. Angular and chromatic dispersion in Kerr-driven conical emission. Opt. Commun. 265, 672-677 (2006). doi: 10.1016/j.optcom.2006.04.062
[13] Porras, M. A. et al. From X- to O-shaped spatiotemporal spectra of light filaments in water. Opt. Lett. 30, 3398-3400 (2005). doi: 10.1364/OL.30.003398
[14] Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299 (2013). doi: 10.1103/RevModPhys.85.299
[15] Walker, P. M. et al. Ultra-low-power hybrid light-matter solitons. Nat. Commun. 6, 8317 (2015). doi: 10.1038/ncomms9317
[16] Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014). doi: 10.1038/ncomms4260
[17] Blair, S. & Wagner, K. Spatial soliton angular deflection logic gates. Appl. Opt. 38, 6749-6772 (1999). doi: 10.1364/AO.38.006749
[18] Longhi, S. Quantum-optical analogies using photonic structures. Laser Photonics Rev. 3, 243-261 (2009). doi: 10.1002/lpor.200810055
[19] Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).
[20] Suchkov, S. V. et al. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10, 177-213 (2016). doi: 10.1002/lpor.201500227
[21] Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489-1537 (2010). doi: 10.1103/RevModPhys.82.1489
[22] Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4, 706-710 (2008). doi: 10.1038/nphys1051
[23] Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167-1170 (2011). doi: 10.1126/science.1202307
[24] Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photonics 6, 50-55 (2011).
[25] Beggs, D. M., Kaliteevski, M. A., Brand, S., Abram, R. A. & Kavokin, A. V. Waveguide polaritons: interaction of a quantum well exciton with an electromagnetic mode of a planar waveguide. Phys. Status Solidi (C) 2, 787-790 (2005). doi: 10.1002/pssc.200460347
[26] Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013). doi: 10.1063/1.4773590
[27] Walker, P. M. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 097403 (2017). doi: 10.1103/PhysRevLett.119.097403
[28] Vladimirova, M. et al. Polariton-polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010). doi: 10.1103/PhysRevB.82.075301
[29] Sekretenko, A. V., Gavrilov, S. S. & Kulakovskii, V. D. Polariton-polariton interactions in microcavities under a resonant 10 to 100 picosecond pulse excitation. Phys. Rev. B 88, 195302 (2013). doi: 10.1103/PhysRevB.88.195302
[30] Larionov, A. V. et al. Polarized nonequilibrium Bose-Einstein condensates of spinor exciton polaritons in a magnetic field. Phys. Rev. Lett. 105, 256401 (2010). doi: 10.1103/PhysRevLett.105.256401
[31] Walker, P. et al. Suppression of Zeeman splitting of the energy levels of exciton-polariton condensates in semiconductor microcavities in an external magnetic field. Phys. Rev. Lett. 106, 257401 (2011). doi: 10.1103/PhysRevLett.106.257401
[32] Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018). doi: 10.1126/sciadv.aat8880
[33] Agrawal, G. P. Nonlinear Fiber Optics, 3rd edn (Academic Press, San Diego, 2001).
[34] Baumberg, J. J. et al. Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247-R16250 (2000). doi: 10.1103/PhysRevB.62.R16247
[35] Sich, M. et al. Transition from propagating polariton solitons to a standing wave condensate induced by interactions. Phys. Rev. Lett. 120, 167402 (2018). doi: 10.1103/PhysRevLett.120.167402
[36] Skryabin, D. V. et al. Backward Cherenkov radiation emitted by polariton solitons in a microcavity wire. Nat. Commun. 8, 1554 (2017). doi: 10.1038/s41467-017-01751-6
[37] Gianfrate, A. et al. Superluminal X-waves in a polariton quantum fluid. Light 7, 17119 (2018). doi: 10.1038/lsa.2017.119
[38] Wen, S. C. & Fan, D. Y. Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions. J. Opt. Soc. Am. B 19, 1653-1659 (2002). doi: 10.1364/JOSAB.19.001653
[39] Skryabin, D. V. & Gorbach, A. V. Colloquium: Looking at a soliton through the prism of optical. Rev. Mod. Phys. 82, 1287-1299 (2010). doi: 10.1103/RevModPhys.82.1287
[40] Ciers, J. et al. Propagating polaritons in Ⅲ-nitride slab waveguides. Phys. Rev. Appl. 7, 034019 (2017). doi: 10.1103/PhysRevApplied.7.034019
[41] Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 9, 713 (2018). doi: 10.1038/s41467-018-03188-x
[42] Gabitov, I. R. et al. Double-resonant optical materials with embedded metal nanostructures. J. Opt. Soc. Am. B 23, 535-542 (2006). doi: 10.1364/JOSAB.23.000535
[43] Skryabin, D. V., Yulin, A. V. & Maimistov, A. I. Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity. Phys. Rev. Lett. 96, 163904 (2006). doi: 10.1103/PhysRevLett.96.163904
[44] Dolgaleva, K. et al. Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides. Opt. Lett. 35, 4093-4095 (2010).
[45] Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).
[46] Smyrnov, O. A., Biancalana, F. & Malzer, S. Modulational instability and solitons in excitonic semiconductor waveguides. Phys. Rev. B 83, 205207 (2011). doi: 10.1103/PhysRevB.83.205207
[47] Di Trapani, P. et al. Spontaneously generated X-shaped light bullets. Phys. Rev. Lett. 91, 093904 (2003). doi: 10.1103/PhysRevLett.91.093904
[48] Kassam, A. K. & Trefethen, L. N. Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214-1233 (2005). doi: 10.1137/S1064827502410633