[1] Feng GP, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000; 28: 41–51. doi: 10.1016/S0896-6273(00)00084-2
[2] Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990; 248: 73–76. doi: 10.1126/science.2321027
[3] Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 2003; 21: 1369–1377. doi: 10.1038/nbt899
[4] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 2006; 50: 823–839. doi: 10.1016/j.neuron.2006.05.019
[5] So PT, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2000; 2: 399–429. doi: 10.1146/annurev.bioeng.2.1.399
[6] Helmchen F, Fee MS, Tank DW, Denk W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 2001; 31: 903–912. doi: 10.1016/S0896-6273(01)00421-4
[7] Perillo EP, Jarrett JW, Liu Y-L, Hassan A, Fernée DC et al. Two-color multiphoton in vivo imaging with a femtosecond diamond raman laser. Light Sci Appl 2017; e17095, doi: 10.1038/lsa.2017.95.
[8] Bar-Noam AS, Farah N, Shoham S. Correction-free remotely scanned two-photon in vivo mouse retinal imaging. Light Sci Appl 2016; 5: e16007; doi: 10.1038/lsa.2016.7.
[9] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005; 2: 932–940. doi: 10.1038/nmeth818
[10] Kneipp M, Turner J, Estrada H, Rebling J, Shoham S et al. Effects of the murine skull in optoacoustic brain microscopy. J Biophotonics 2016; 9: 117–123. doi: 10.1002/jbio.201400152
[11] Fan XF, Zheng WT, Singh DJ. Light scattering and surface plasmons on small spherical particles. Light Sci Appl 2014; 3: e179; doi: 10.1038/lsa.2014.60.
[12] Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 2009; 4: 1128–1144. doi: 10.1038/nprot.2009.89
[13] Levasseur JE, Wei EP, Raper AJ, Kontos AA, Patterson JL. Detailed description of a cranial window technique for acute and chronic experiments. Stroke 1975; 6: 308–317. doi: 10.1161/01.STR.6.3.308
[14] Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan WB. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 2010; 5: 201–208. doi: 10.1038/nprot.2009.222
[15] Yu XZ, Zuo Y. Two-photon in vivo imaging of dendritic spines in the mouse cortex using a thinned-skull preparation. J Vis Exp 2014; 87: e51520. doi: 10.3791/51520
[16] Takehara H, Nagaoka A, Noguchi J, Akagi T, Kasai H et al. Lab-on-a-brain: implantable micro-optical fluidic devices for neural cell analysis in vivo. Sci Rep 2014; 4: 6721. doi: 10.1038/srep06721
[17] Roome CJ, Kuhn B. Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology. Front Cell Neurosci 2014; 8: 379. http://europepmc.org/abstract/med/25426027
[18] Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC et al. Removable cranial windows for long-term imaging in awake mice. Nat Protoc 2014; 9: 2515–2538. doi: 10.1038/nprot.2014.165
[19] Drew PJ, Shih AY, Driscoll JD, Knutsen PM, Blinder P et al. Chronic optical access through a polished and reinforced thinned skull. Nat Methods 2010; 7: 981–984. doi: 10.1038/nmeth.1530
[20] Dombeck D, Tank D. Two-photon imaging of neural activity in awake mobile mice. Cold Spring Harb Protoc 2014; 2014: 726–736. doi: 10.1101/pdb.top081810
[21] Nimmerjahn A. Optical window preparation for two-photon imaging of microglia in mice. Cold Spring Harb Protoc 2012; 2012: 587–593. doi: 10.1101/pdb.prot068155
[22] Shih AY, Drew PJ, Kleinfeld D. Imaging vasodynamics in the awake mouse brain with two-photon microscopy. In: Zhao M, Ma H, Schwartz TH, editors. Neurovascular Coupling Methods. Neuromethods. New York: Humana Press; 2014. pp55–73.
[23] Heo C, Park H, Kim YT, Baeg E, Kim YH et al. A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci Rep 2016; 6: 27818. doi: 10.1038/srep27818
[24] Dorand RD, Barkauskas DS, Evans TA, Petrosiute A, Huang AY. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital 2014; 3: e29728. doi: 10.4161/intv.29728
[25] Portera-Cailliau C, Weimer RM, De Paola V, Caroni P, Svoboda K. Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 2005; 3: e272. doi: 10.1371/journal.pbio.0030272
[26] Cruz-Martin A, Portera-Cailliau C. In vivo imaging of axonal and dendritic structures in neonatal mouse cortex. Cold Spring Harb Protoc 2014; 2014: 57–64. doi: 10.1101/pdb.prot080150
[27] Kim TH, Zhang YP, Lecoq J, Jung JC, Li JE et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep 2016; 17: 3385–3394. doi: 10.1016/j.celrep.2016.12.004
[28] Shih AY, Mateo C, Drew PJ, Tsai PS, Kleinfeld D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp 2012; 61: e3742. http://www.ncbi.nlm.nih.gov/pubmed/22433225
[29] Xu HT, Pan F, Yang G, Gan WB. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 2007; 10: 549–551. doi: 10.1038/nn1883
[30] Zhu D, Larin KV, Luo QM, Tuchin VV. Recent progress in tissue optical clearing. Laser Photonics Rev 2013; 7: 732–757. doi: 10.1002/lpor.201200056
[31] Wang J, Zhang Y, Li PC, Luo QM, Zhu D. Review: tissue optical clearing window for blood flow monitoring. IEEE J Sel Top Quant Electron 2014; 20: 6801112. http://www.researchgate.net/publication/260636176_Review_Tissue_Optical_Clearing_Window_for_Blood_Flow_Monitoring
[32] Chung K, Deisseroth K. CLARITY for mapping the nervous system. Nat Methods 2013; 10: 508–513. doi: 10.1038/nmeth.2481
[33] Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 2014; 159: 911–924. doi: 10.1016/j.cell.2014.10.034
[34] Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014; 158: 945–958. doi: 10.1016/j.cell.2014.07.017
[35] Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 2012; 7: 1983–1995. doi: 10.1038/nprot.2012.119
[36] Pan CC, Cai RY, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 2016; 13: 859–867. doi: 10.1038/nmeth.3964
[37] Lee E, Choi J, Jo Y, Kim JY, Jang YJ et al. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep 2016; 6: 18631. doi: 10.1038/srep18631
[38] Renier N, Adams EL, Kirst C, Wu ZH, Azevedo R et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 2016; 165: 1789–1802. doi: 10.1016/j.cell.2016.05.007
[39] Berke IM, Miola JP, David MA, Smith MK, Price C. Seeing through musculoskeletal tissues: improving in situ imaging of bone and the lacunar canalicular system through optical clearing. PLoS One 2016; 11: e0150268. doi: 10.1371/journal.pone.0150268
[40] Neu CP, Novak T, Gilliland KF, Marshall P, Calve S. Optical clearing in collagen- and proteoglycan-rich osteochondral tissues. Osteoarthr Cartil 2015; 23: 405–413. doi: 10.1016/j.joca.2014.11.021
[41] Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH et al. Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med 2017; 9: eaah6518. doi: 10.1126/scitranslmed.aah6518
[42] Wang J, Zhang Y, Xu TH, Luo QM, Zhu D. An innovative transparent cranial window based on skull optical clearing. Laser Phys Lett 2012; 9: 469–473. doi: 10.7452/lapl.201210017
[43] Yang XQ, Zhang Y, Zhao K, Zhao YJ, Liu YY et al. Skull optical clearing solution for enhancing ultrasonic and photoacoustic imaging. IEEE Trans Med Imag 2016; 35: 1903–1906. doi: 10.1109/TMI.2016.2528284
[44] Kitaura H, Hishida R, Shibuki K. Transcranial imaging of somatotopic map plasticity after tail cut in mice. Brain Res 2010; 1319: 54–59. doi: 10.1016/j.brainres.2010.01.020
[45] Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005; 50: 427–434. doi: 10.1002/glia.20207
[46] Zuo Y, Lin A, Chang P, Gan WB. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 2005; 46: 181–189. doi: 10.1016/j.neuron.2005.04.001
[47] Holtmaat AJGD, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang XQ et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 2005; 45: 279–291. doi: 10.1016/j.neuron.2005.01.003
[48] Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8: 752–758. doi: 10.1038/nn1472
[49] Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314–1318. doi: 10.1126/science.1110647