[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713
[2] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012). doi: 10.1038/nmat3292
[3] Liu, L. X. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031–5036 (2014). doi: 10.1002/adma.201401484
[4] Kim, M., Wong, A. M. H. & Eleftheriades, G. V. Optical Huygens' metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys. Rev. X 4, 041042 (2014).
[5] Wang, Q. et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep. 6, 32867 (2016). doi: 10.1038/srep32867
[6] Lee, G. Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237–4245 (2018). doi: 10.1039/C7NR07154J
[7] Ding, J., An, S. S., Zheng, B. & Zhang, H. L. Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths. Adv. Opt. Mater. 5, 201700079 (2017).
[8] Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014). doi: 10.1038/lsa.2014.99
[9] Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494
[10] Xu, H. X. et al. Wavenumber-splitting metasurfaces achieve multi-channel diffusive invisibility. Adv. Opt. Mater. 6, 1800010 (2018). doi: 10.1002/adom.201800010
[11] Zhu, B. O. et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci. Rep. 4, 4971 (2014).
[12] Chen, K. et al. A reconfigurable active Huygens' metalens. Adv. Mater. 29, 1606422 (2017). doi: 10.1002/adma.201606422
[13] Xu, H. X. et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016). doi: 10.1038/srep27503
[14] Qin, F. et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2, e1501168 (2016). doi: 10.1126/sciadv.1501168
[15] Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009). doi: 10.1126/science.1177031
[16] Hao, J. M. et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007). doi: 10.1103/PhysRevLett.99.063908
[17] Li, J. X. et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater. 25, 704–710 (2015). doi: 10.1002/adfm.201403669
[18] Pfeiffer, C., Zhang, C., Ray, V., Guo, L. J. & Grbic, A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Phys. Rev. Lett. 113, 023902 (2014). doi: 10.1103/PhysRevLett.113.023902
[19] Menzel, C. et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104, 253902 (2010). doi: 10.1103/PhysRevLett.104.253902
[20] Mutlu, M., Akosman, A. E., Serebryannikov, A. E. & Ozbay, E. Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys. Rev. Lett. 108, 213905 (2012). doi: 10.1103/PhysRevLett.108.213905
[21] Xu, H. X., Wang, G. M., Qi, M. Q., Cai, T. & Cui, T. J. Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial. Opt. Express 21, 24912–24921 (2013). doi: 10.1364/OE.21.024912
[22] Zhou, J. X. et al. Broadband photonic spin hall meta-lens. ACS Nano 12, 82–88 (2018). doi: 10.1021/acsnano.7b07379
[23] Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012). doi: 10.1038/ncomms2207
[24] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015). doi: 10.1038/nnano.2015.2
[25] Zhang, L., Liu, S., Li, L. L. & Cui, T. J. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces. ACS Appl. Mater. Interfaces 9, 36447–36455 (2017). doi: 10.1021/acsami.7b12468
[26] Xu, H. X. et al. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics 5, 1691–1702 (2018). doi: 10.1021/acsphotonics.7b01036
[27] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[28] Arbabi, A., Horie, Y., Bagheri, M. M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015). doi: 10.1038/nnano.2015.186
[29] Mueller, J. P. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[30] Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017). doi: 10.1126/science.aao5392
[31] Wang, Z. J. et al. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 3, 2096–2101 (2016). doi: 10.1021/acsphotonics.6b00533
[32] Jing, L. Q. et al. Gradient chiral metamirrors for spin-selective anomalous reflection. Laser Photonics Rev. 11, 1700115 (2017). doi: 10.1002/lpor.201700115
[33] Burch, J. & Di Falco, A. Surface topology specific metasurface holograms. ACS Photonics 5, 1762–1766 (2018). doi: 10.1021/acsphotonics.7b01449
[34] Durnin, J., Miceli, J. J. Jr & Eberly, J. H. Diffraction-free beams. Phy Rev. Lett. 58, 1499–1501 (1987). doi: 10.1103/PhysRevLett.58.1499
[35] Qi, M. Q., Tang, W. X. & Cui, T. J. A broadband Bessel beam launcher using metamaterial lens. Sci. Rep. 5, 11732 (2015). doi: 10.1038/srep11732
[36] Pfeiffer, C. & Grbic, A. Controlling vector Bessel beams with metasurfaces. Phys. Rev. Appl. 2, 044012 (2014). doi: 10.1103/PhysRevApplied.2.044012
[37] Aieta, F. et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano. Lett. 12, 4932–4936 (2012). doi: 10.1021/nl302516v
[38] Chen, W. T. et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 6, e16259 (2017). doi: 10.1038/lsa.2016.259
[39] Heckenberg, N. R., McDuff, R., Smith, C. P. & White, A. G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992). doi: 10.1364/OL.17.000221
[40] Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007). doi: 10.1103/PhysRevLett.99.087701
[41] Mehmood, M. Q. et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 28, 2533–2539 (2016). doi: 10.1002/adma.201504532
[42] Ling, X. H. et al. Recent advances in the spin Hall effect of light. Rep. Prog. Phys. 80, 066401 (2017). doi: 10.1088/1361-6633/aa5397
[43] Xu, H. X., Liu, H., Ling, X. H., Sun, Y. M. & Yuan, F. Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface. IEEE Trans. Antennas Propag. 65, 7378–7382 (2017). doi: 10.1109/TAP.2017.2761548
[44] Yang, Y. J., Thirunavukkarasu, G., Babiker, M. & Yuan, J. Orbital-angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys. Rev. Lett. 119, 094802 (2017). doi: 10.1103/PhysRevLett.119.094802
[45] Liu, S., Cui, T. J., Zhang, L., Xu, Q. & Wang, Q. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3, 1600156 (2016). doi: 10.1002/advs.201600156
[46] Karimi, E., Schulz, S. A., De Leon, I., Qassim, H. & Upham, J. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014). doi: 10.1038/lsa.2014.48