[1] Jalas, D. et al. What is – and what is not – an optical isolator. Nat. Photonics 7, 579–582 (2013). doi: 10.1038/nphoton.2013.185
[2] Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018). doi: 10.1103/PhysRevApplied.10.047001
[3] Asadchy, V. S. et al. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108, 1684–1727 (2020). doi: 10.1109/JPROC.2020.3012381
[4] Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric active device. Nat. Phys. 7, 311–315 (2011). doi: 10.1038/nphys1893
[5] Malz, D. et al. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett. 120, 023601 (2018). doi: 10.1103/PhysRevLett.120.023601
[6] Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293
[7] Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). doi: 10.1126/science.aaa9519
[8] Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017). doi: 10.1038/nature21037
[9] Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). doi: 10.1038/nphys2927
[10] Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics 8, 524–529 (2014). doi: 10.1038/nphoton.2014.133
[11] Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018). doi: 10.1038/s41586-018-0245-5
[12] Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018). doi: 10.1103/PhysRevLett.121.153601
[13] Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017). doi: 10.1038/s41467-017-01304-x
[14] Kim, J. et al. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015). doi: 10.1038/nphys3236
[15] Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016). doi: 10.1038/nphoton.2016.161
[16] Ruesink, F. et al. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016). doi: 10.1038/ncomms13662
[17] Peterson, G. A. et al. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X 7, 031001 (2017). http://arxiv.org/abs/1703.05269
[18] Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015). http://arxiv.org/abs/1502.07274
[19] Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017). doi: 10.1038/nphys4009
[20] Xu, H. et al. Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature 568, 65–69 (2019). doi: 10.1038/s41586-019-1061-2
[21] Wang, Y. P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019). doi: 10.1103/PhysRevLett.123.127202
[22] Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[23] Fang, K. J. & Fan, S. H. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013). doi: 10.1103/PhysRevLett.111.203901
[24] Xia, K. Y., Nori, F. & Xiao, M. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett. 121, 203602 (2018). doi: 10.1103/PhysRevLett.121.203602
[25] Zhang, S. C. et al. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photonics 12, 744–748 (2018). doi: 10.1038/s41566-018-0269-2
[26] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904
[27] Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics 5, 758–762 (2011). doi: 10.1038/nphoton.2011.270
[28] Hadad, Y. & Steinberg, B. Z. Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett. 105, 233904 (2010). doi: 10.1103/PhysRevLett.105.233904
[29] Khanikaev, A. B. et al. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett. 105, 126804 (2010). doi: 10.1103/PhysRevLett.105.126804
[30] Yu, Z. F. & Fan, S. H. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009). doi: 10.1038/nphoton.2008.273
[31] Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics 5, 549–553 (2011). doi: 10.1038/nphoton.2011.180
[32] Tzuang, L. D. et al. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics 8, 701–705 (2014). doi: 10.1038/nphoton.2014.177
[33] Estep, N. A. et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014). doi: 10.1038/nphys3134
[34] Koutserimpas, T. T. & Fleury, R. Nonreciprocal gain in non-Hermitian time-floquet systems. Phys. Rev. Lett. 120, 087401 (2018). doi: 10.1103/PhysRevLett.120.087401
[35] Kittlaus, E. A. et al. Non-reciprocal interband Brillouin modulation. Nat. Photonics 12, 613–619 (2018). doi: 10.1038/s41566-018-0254-9
[36] Guo, X. X. et al. Nonreciprocal metasurface with space-time phase modulation. Light. Sci. Appl. 8, 123 (2019). doi: 10.1038/s41377-019-0225-z
[37] Khanikaev, A. B. & Alù, A. Optical isolators: nonlinear dynamic reciprocity. Nat. Photonics 9, 359–361 (2015). doi: 10.1038/nphoton.2015.86
[38] Shi, Y., Yu, Z. F. & Fan, S. H. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9, 388–392 (2015). doi: 10.1038/nphoton.2015.79
[39] Dai, D. X., Bauters, J. & Bowers, J. E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light. Sci. Appl. 1, e1 (2012). doi: 10.1038/lsa.2012.1
[40] Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photonics 11, 774–783 (2017). doi: 10.1038/s41566-017-0051-x
[41] Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939
[42] You, J. Q. & Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011). doi: 10.1038/nature10122
[43] Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). doi: 10.1103/RevModPhys.86.1391
[44] Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010). doi: 10.1103/RevModPhys.82.1041
[45] Liu, Y. C. et al. Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014). doi: 10.1103/PhysRevLett.112.213602
[46] Yang, F., Liu, Y. C. & You, L. Anti-PT symmetry in dissipatively coupled optical systems. Phys. Rev. A 96, 053845 (2017).
[47] Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics 11, 752–762 (2017). doi: 10.1038/s41566-017-0031-1
[48] Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014). doi: 10.1126/science.1258004
[49] Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56–61 (2012). doi: 10.1038/nphoton.2011.286
[50] Xiao, Y. F. et al. Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010). doi: 10.1103/PhysRevA.82.065804
[51] Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). doi: 10.1126/science.aaz8727