[1] |
Jalas, D. et al. What is – and what is not – an optical isolator. Nat. Photonics 7, 579–582 (2013). doi: 10.1038/nphoton.2013.185 |
[2] |
Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018). doi: 10.1103/PhysRevApplied.10.047001 |
[3] |
Asadchy, V. S. et al. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108, 1684–1727 (2020). doi: 10.1109/JPROC.2020.3012381 |
[4] |
Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric active device. Nat. Phys. 7, 311–315 (2011). doi: 10.1038/nphys1893 |
[5] |
Malz, D. et al. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett. 120, 023601 (2018). doi: 10.1103/PhysRevLett.120.023601 |
[6] |
Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293 |
[7] |
Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). doi: 10.1126/science.aaa9519 |
[8] |
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017). doi: 10.1038/nature21037 |
[9] |
Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). doi: 10.1038/nphys2927 |
[10] |
Chang, L. et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics 8, 524–529 (2014). doi: 10.1038/nphoton.2014.133 |
[11] |
Maayani, S. et al. Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018). doi: 10.1038/s41586-018-0245-5 |
[12] |
Huang, R. et al. Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018). doi: 10.1103/PhysRevLett.121.153601 |
[13] |
Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017). doi: 10.1038/s41467-017-01304-x |
[14] |
Kim, J. et al. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015). doi: 10.1038/nphys3236 |
[15] |
Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics 10, 657–661 (2016). doi: 10.1038/nphoton.2016.161 |
[16] |
Ruesink, F. et al. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016). doi: 10.1038/ncomms13662 |
[17] |
Peterson, G. A. et al. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X 7, 031001 (2017). http://arxiv.org/abs/1703.05269 |
[18] |
Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015). http://arxiv.org/abs/1502.07274 |
[19] |
Fang, K. J. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017). doi: 10.1038/nphys4009 |
[20] |
Xu, H. et al. Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature 568, 65–69 (2019). doi: 10.1038/s41586-019-1061-2 |
[21] |
Wang, Y. P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019). doi: 10.1103/PhysRevLett.123.127202 |
[22] |
Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236 |
[23] |
Fang, K. J. & Fan, S. H. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013). doi: 10.1103/PhysRevLett.111.203901 |
[24] |
Xia, K. Y., Nori, F. & Xiao, M. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett. 121, 203602 (2018). doi: 10.1103/PhysRevLett.121.203602 |
[25] |
Zhang, S. C. et al. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photonics 12, 744–748 (2018). doi: 10.1038/s41566-018-0269-2 |
[26] |
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904 |
[27] |
Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics 5, 758–762 (2011). doi: 10.1038/nphoton.2011.270 |
[28] |
Hadad, Y. & Steinberg, B. Z. Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett. 105, 233904 (2010). doi: 10.1103/PhysRevLett.105.233904 |
[29] |
Khanikaev, A. B. et al. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett. 105, 126804 (2010). doi: 10.1103/PhysRevLett.105.126804 |
[30] |
Yu, Z. F. & Fan, S. H. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3, 91–94 (2009). doi: 10.1038/nphoton.2008.273 |
[31] |
Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics 5, 549–553 (2011). doi: 10.1038/nphoton.2011.180 |
[32] |
Tzuang, L. D. et al. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photonics 8, 701–705 (2014). doi: 10.1038/nphoton.2014.177 |
[33] |
Estep, N. A. et al. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys. 10, 923–927 (2014). doi: 10.1038/nphys3134 |
[34] |
Koutserimpas, T. T. & Fleury, R. Nonreciprocal gain in non-Hermitian time-floquet systems. Phys. Rev. Lett. 120, 087401 (2018). doi: 10.1103/PhysRevLett.120.087401 |
[35] |
Kittlaus, E. A. et al. Non-reciprocal interband Brillouin modulation. Nat. Photonics 12, 613–619 (2018). doi: 10.1038/s41566-018-0254-9 |
[36] |
Guo, X. X. et al. Nonreciprocal metasurface with space-time phase modulation. Light. Sci. Appl. 8, 123 (2019). doi: 10.1038/s41377-019-0225-z |
[37] |
Khanikaev, A. B. & Alù, A. Optical isolators: nonlinear dynamic reciprocity. Nat. Photonics 9, 359–361 (2015). doi: 10.1038/nphoton.2015.86 |
[38] |
Shi, Y., Yu, Z. F. & Fan, S. H. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9, 388–392 (2015). doi: 10.1038/nphoton.2015.79 |
[39] |
Dai, D. X., Bauters, J. & Bowers, J. E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light. Sci. Appl. 1, e1 (2012). doi: 10.1038/lsa.2012.1 |
[40] |
Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photonics 11, 774–783 (2017). doi: 10.1038/s41566-017-0051-x |
[41] |
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939 |
[42] |
You, J. Q. & Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011). doi: 10.1038/nature10122 |
[43] |
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). doi: 10.1103/RevModPhys.86.1391 |
[44] |
Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010). doi: 10.1103/RevModPhys.82.1041 |
[45] |
Liu, Y. C. et al. Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014). doi: 10.1103/PhysRevLett.112.213602 |
[46] |
Yang, F., Liu, Y. C. & You, L. Anti-PT symmetry in dissipatively coupled optical systems. Phys. Rev. A 96, 053845 (2017). |
[47] |
Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics 11, 752–762 (2017). doi: 10.1038/s41566-017-0031-1 |
[48] |
Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014). doi: 10.1126/science.1258004 |
[49] |
Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56–61 (2012). doi: 10.1038/nphoton.2011.286 |
[50] |
Xiao, Y. F. et al. Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010). doi: 10.1103/PhysRevA.82.065804 |
[51] |
Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020). doi: 10.1126/science.aaz8727 |