[1] Helstrom, C. W. Quantum Detection and Estimation Theory (Academic, 1976).
[2] Holevo, A. S. Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, 1982).
[3] Yuan, H. D. & Fung, C. H. F. Quantum parameter estimation with general dynamics. npj Quantum Inf. 3, 14 (2017). doi: 10.1038/s41534-017-0014-6
[4] Wineland, D. J. et al. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992). doi: 10.1103/PhysRevA.46.R6797
[5] Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981). doi: 10.1103/PhysRevD.23.1693
[6] Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002). doi: 10.1080/0950034021000011536
[7] Braunstein, S. L. Quantum limits on precision measurements of phase. Phys. Rev. Lett. 69, 3598–3601 (1992). doi: 10.1103/PhysRevLett.69.3598
[8] Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004). doi: 10.1126/science.1104149
[9] Tan, S. H. et al. Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008). doi: 10.1103/PhysRevLett.101.253601
[10] Pirandola, S. Quantum reading of a classical digital memory. Phys. Rev. Lett. 106, 090504 (2011). doi: 10.1103/PhysRevLett.106.090504
[11] Nair, R. & Yen, B. J. Optimal quantum states for image sensing in loss. Phys. Rev. Lett. 107, 193602 (2011). doi: 10.1103/PhysRevLett.107.193602
[12] Bollinger, J. J. et al. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996). doi: 10.1103/PhysRevA.54.R4649
[13] Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004). doi: 10.1038/nature02552
[14] Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010). doi: 10.1126/science.1188172
[15] Goda, K. et al. A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008). doi: 10.1038/nphys920
[16] Grangier, P. et al. Squeezed-light-enhanced polarization interferometer. Phys. Rev. Lett. 59, 2153–2156 (1987). doi: 10.1103/PhysRevLett.59.2153
[17] Xiao, M., Wu, L. A. & Kimble, H. J. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59, 278–281 (1987). doi: 10.1103/PhysRevLett.59.278
[18] Treps, N. et al. A quantum laser pointer. Science 301, 940–943 (2003). doi: 10.1126/science.1086489
[19] Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011). doi: 10.1038/nphoton.2011.35
[20] Schnabel, R. Squeezed states of light and their applications in laser interferometers. Phys. Rep. 684, 1–51 (2017). doi: 10.1016/j.physrep.2017.04.001
[21] Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a Spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988). doi: 10.1103/PhysRevLett.60.1351
[22] Aharonov, Y. & Vaidman, L. in Time in Quantum Mechanics (eds Muga, J. G., Mayato, R. S. & Egusquiza, I. L. ) 369–412 (Springer, 2002).
[23] Hallaji, M. et al. Weak-value amplification of the nonlinear effect of a single photon. Nat. Phys. 13, 540–544 (2017). doi: 10.1038/nphys4040
[24] Hosten, O. & Kwiat, P. Observation of the spin hall effect of light via weak measurements. Science 319, 787–790 (2008). doi: 10.1126/science.1152697
[25] Dixon, P. B. et al. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009). doi: 10.1103/PhysRevLett.102.173601
[26] Brunner, N. & Simon, C. Measuring small longitudinal phase shifts: weak measurements or standard interferometry? Phys. Rev. Lett. 105, 010405 (2010). doi: 10.1103/PhysRevLett.105.010405
[27] Xu, X. Y. et al. Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013). doi: 10.1103/PhysRevLett.111.033604
[28] Ferrie, C. & Combes, J. Weak value amplification is suboptimal for estimation and detection. Phys. Rev. Lett. 112, 040406 (2014). doi: 10.1103/PhysRevLett.112.040406
[29] Knee, G. C. & Gauger, E. M. When amplification with weak values fails to suppress technical noise. Phys. Rev. X 4, 011032 (2014). doi: 10.1103/PhysRevX.4.011032
[30] Dressel, J. et al. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307–316 (2014). doi: 10.1103/RevModPhys.86.307
[31] Zhang, L. J., Datta, A. & Walmsley, I. A. Precision metrology using weak measurements. Phys. Rev. Lett. 114, 210801 (2015). doi: 10.1103/PhysRevLett.114.210801
[32] Alves, G. B. et al. Weak-value amplification as an optimal metrological protocol. Phys. Rev. A 91, 062107 (2015). doi: 10.1103/PhysRevA.91.062107
[33] Vaidman, L. Weak value controversy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160395 (2017). doi: 10.1098/rsta.2016.0395
[34] Xu, L. et al. Approaching quantum-limited metrology with imperfect detectors by using weak-value amplification. Phys. Rev. Lett. 125, 080501 (2020). doi: 10.1103/PhysRevLett.125.080501
[35] Harris, J., Boyd, R. W. & Lundeen, J. S. Weak value amplification can outperform conventional measurement in the presence of detector saturation. Phys. Rev. Lett. 118, 070802 (2017). doi: 10.1103/PhysRevLett.118.070802
[36] Zhang, Z. H. et al. Ultrasensitive biased weak measurement for longitudinal phase estimation. Phys. Rev. A 94, 053843 (2016). doi: 10.1103/PhysRevA.94.053843
[37] Li, D. M. et al. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain. Appl. Phys. Lett. 112, 213701 (2018). doi: 10.1063/1.5019816
[38] Li, D. M. et al. A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances. Biosens. Bioelectron. 110, 103–109 (2018). doi: 10.1016/j.bios.2018.03.033
[39] Jaynes, E. T. in Probability Theory: The Logic of Science (ed. Bretthorst, G. L. ) (Cambridge University Press, 2003).