[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[3] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[4] Chen, H. T., Taylor, A. J. & Yu, N. F. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016). doi: 10.1088/0034-4885/79/7/076401
[5] He, Q. et al. High‐efficiency metasurfaces: principles, realizations, and applications. Adv. Optical Mater. 6, 1800415 (2018). doi: 10.1002/adom.201800415
[6] Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426-431 (2012). doi: 10.1038/nmat3292
[7] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223-6229 (2012). doi: 10.1021/nl3032668
[8] Luo, W. J. et al. Photonic spin hall effect with nearly 100% efficiency. Adv. Optical Mater. 3, 1102-1108 (2015). doi: 10.1002/adom.201500068
[9] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889-898 (2014). doi: 10.1038/nphoton.2014.247
[10] Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193-204 (2010). doi: 10.1038/nmat2630
[11] Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261-6266 (2015). doi: 10.1021/acs.nanolett.5b02926
[12] Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 3, 514-519 (2016). doi: 10.1021/acsphotonics.5b00678
[13] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937-943 (2015). doi: 10.1038/nnano.2015.186
[14] Zhao, W. Y. et al. Dielectric Huygens' metasurface for high-efficiency hologram operating in transmission mode. Sci. Rep. 6, 30613 (2016). doi: 10.1038/srep30613
[15] Khorasaninejad, M. et al. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016). doi: 10.1126/sciadv.1501258
[16] Bomzon, Z., Kleiner, V. & Hasman, E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt. Lett. 26, 1424-1426 (2001). doi: 10.1364/OL.26.001424
[17] Lalanne, P. et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081-1083 (1998). doi: 10.1364/OL.23.001081
[18] Bomzon, Z. et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141-1143 (2002). doi: 10.1364/OL.27.001141
[19] Decker, M. et al. High‐efficiency dielectric Huygens' surfaces. Adv. Optical Mater. 3, 813-820 (2015). doi: 10.1002/adom.201400584
[20] Mueller, J. P. B., Leosson, K. & Capasso, F. Ultracompact metasurface in-line polarimeter. Optica 3, 42-47 (2016). doi: 10.1364/OPTICA.3.000042
[21] Hasman, E. et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl. Phys. Lett. 82, 328-330 (2003). doi: 10.1063/1.1539300
[22] Khorasaninejad, M. et al. Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595-4600 (2016). doi: 10.1021/acs.nanolett.6b01897
[23] Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[24] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[25] Shrestha, S., Overvig, A. C. & Yu, N. F. Broadband Achromatic Metasurface Lenses. (Conference on Lasers and Electro-Optics, San Jose, 2017).
[26] Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625-632 (2017). doi: 10.1364/OPTICA.4.000625
[27] Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819-1824 (2017). doi: 10.1021/acs.nanolett.6b05137
[28] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[29] Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018). doi: 10.1038/s41377-018-0078-x
[30] Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
[31] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235-5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[32] Zhao, W. Y. et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett. 41, 147-150 (2016). doi: 10.1364/OL.41.000147
[33] Overvig, A. et al. Two-color and 3D Phase-Amplitude Modulation Holograms. (Conference on Lasers and Electro-Optics, San Jose, 2018).
[34] Gabor, D. A new microscopic principle. Nature 161, 777 (1948). doi: 10.1038/161777a0
[35] Gabor, D. Fundamentals and applications of holography. Vacuum 16, 313 (1966).
[36] Genevet, P. & Capasso, F. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys. 78, 024401 (2015). doi: 10.1088/0034-4885/78/2/024401
[37] Wang, Q. et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep. 6, 32867 (2016). doi: 10.1038/srep32867
[38] Overvig, A. et al. High-efficiency Amplitude-Phase Modulation Holograms Based on Dielectric Metasurfaces. (Conference on Lasers and Electro-Optics, San Jose, 2017).
[39] Lee, G. Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale 10, 4237-4245 (2018). doi: 10.1039/C7NR07154J
[40] Jia, S. L. et al. Broadband metasurface for independent control of reflected amplitude and phase. AIP Adv. 6, 045024 (2016). doi: 10.1063/1.4948513
[41] Pancharatnam, S. Generalized theory of interference, and its applications: Part Ⅰ. Coherent pencils. Proc. Indian Acad. Sci.-Sect. A 44, 247-262 (1956). doi: 10.1007/BF03046050
[42] Jones, R. C. A new calculus for the treatment of optical systems. Ⅰ. Description and discussion of the calculus. J. Optical Soc. Am. 31, 488-493 (1941). doi: 10.1364/JOSA.31.000488
[43] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-246 (1972).
[44] Yang, J. J., Sell, D. & Fan, J. A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering. Ann. der Phys. 530, 1700302 (2018). doi: 10.1002/andp.201700302
[45] Shabtay, G. Three-dimensional beam forming and Ewald's surfaces. Opt. Commun. 226, 33-37 (2003). doi: 10.1016/j.optcom.2003.07.056
[46] Whyte, G. & Courtial, J. Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg-Saxton algorithm. N. J. Phys. 7, 117 (2005). doi: 10.1088/1367-2630/7/1/117
[47] Xia, X. Y. & Xia, J. Phase-only stereoscopic hologram calculation based on Gerchberg-Saxton iterative algorithm. Chin. Phys. B 25, 094204 (2016). doi: 10.1088/1674-1056/25/9/094204