[1] Xu, L., Zhang, X. C. & Auston, D. H. Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Applied Physics Letters 61, 1784-1786 (1992). doi: 10.1063/1.108426
[2] Grischkowsky, D. et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B 7, 2006 (1990). doi: 10.1364/JOSAB.7.002006
[3] Williams, B. S. Terahertz quantum-cascade lasers. Nature Photonics 1, 517-525 (2007). doi: 10.1038/nphoton.2007.166
[4] Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156-159 (2002). doi: 10.1038/417156a
[5] Glyavin, M. Y., Luchinin, A. G. & Golubiatnikov, G. Y. Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field. Physical Review Letters 100, 015101 (2008). doi: 10.1103/PhysRevLett.100.015101
[6] Carr, G. L. et al. High-power terahertz radiation from relativistic electrons. Nature 420, 153-156 (2002). doi: 10.1038/nature01175
[7] Kulipanov, G. N. et al. Novosibirsk Free Electron Laser—Facility Description and Recent Experiments. IEEE Transactions on Terahertz Science and Technology 5, 798-809 (2015). doi: 10.1109/TTHZ.2015.2453121
[8] Cherkassky, V. S. et al. Introscopy of solids at novosibirsk terahertz free electron laser. In 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, pages 320–320. IEEE, 2006.
[9] Hübers, H. W., Richter, H. & Wienold, M. High-resolution terahertz spectroscopy with quantum-cascade lasers. Journal of Applied Physics 125, 151401 (2019). doi: 10.1063/1.5084105
[10] Behnken, B. N. et al. Real-time imaging using a 28 THz quantum cascade laser and uncooled infrared microbolometer camera. Optics Letters 33, 440 (2008). doi: 10.1364/OL.33.000440
[11] Weightman, P. Prospects for the study of biological systems with high power sources of terahertz radiation. Physical Biology 9, 053001 (2012). doi: 10.1088/1478-3975/9/5/053001
[12] Agranat, M. B. et al. Damage in a Thin Metal Film by High-Power Terahertz Radiation. Physical Review Letters 120, 085704 (2018). doi: 10.1103/PhysRevLett.120.085704
[13] Kulipanov, G. N. et al. Experimental study of the interaction between terahertz radiation from the Novosibirsk free-electron laser and water aerosol. Atmospheric and Oceanic Optics 28, 165-168 (2015). doi: 10.1134/S1024856015020062
[14] Pavelyev, V. S. et al. Towards multichannel terahertz telecommunication based on mode division multiplexing. AIP Conference Proceedings 2299, 030002 (2020).
[15] Grant, P.D. et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector. Electronics Letters 45, 952 (2009). doi: 10.1049/el.2009.1586
[16] Kubarev, V. V. et al. Threshold Conditions for Terahertz Laser Discharge in Atmospheric Gases. Journal of Infrared,Millimeter,and Terahertz Waves 38, 787-798 (2017). doi: 10.1007/s10762-017-0380-3
[17] Turov, A. T. et al. Resolution and contrast in terahertz pulse time-domain holographic reconstruction. Applied optics 58, G231-G240 (2019). doi: 10.1364/AO.58.00G231
[18] Choporova, Y. Y., Cherkassky, V. S. & Knyazev, B. A. In-line and reference-beam holography experiments on Novosibirsk free electron. Proceedings of 2011 International Conference on Infrared,Millimeter, and Terahertz Waves, IEEE MicrowaveTheory & Tech Soc; NASA, California Inst Technol, Jet Prop Lab; Univ Wollongong, IEEE, 2011.
[19] Heimbeck, M. S. et al. Terahertz digital holographic imaging of voids within visibly opaque dielectrics. IEEE Transactions on Terahertz Science and Technology 5, 110-116 (2014).
[20] Heimbeck, M. S. & Everitt, H. O. Terahertz digital holographic imaging. Advances in Optics and Photonics 12, 1 (2020). doi: 10.1364/AOP.12.000001
[21] Choporova, Y. Y., Knyazev, B. A. & Mitkov, M. S. Holography as imaging technique for the THz range. Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE, 2016.
[22] Shevchenko, O. A. et al. The novosibirsk free electron laser facility. AIP Conference Proceedings 2299, 020001 (2020).
[23] Denisov, G. G. et al. The concept of a gyrotron with megawatt output at both first and second cyclotron harmonics for plasma heating in spherical tokamaks. Radiophysics and Quantum Electronics 63, 345-353 (2020).
[24] Kononenko, T. V. et al. Silicon kinoform cylindrical lens with low surface roughness for high-power terahertz radiation. Optics & Laser Technology 123, 105953 (2020).
[25] Siemion, A. The magic of optics—an overview of recent advanced terahertz diffractive optical elements. Sensors 21, 100 (2021).
[26] Semenov, A. D., Gol'tsman, G. N. & Sobolewski, R. Hot-electron effect in superconductors and its applications for radiation sensors. Superconductor Science and Technology 15, R1-R16 (2002). doi: 10.1088/0953-2048/15/4/201
[27] Komiyama, S. Single-Photon Detectors in the Terahertz Range. IEEE Journal of Selected Topics in Quantum Electronics 17, 54-66 (2011). doi: 10.1109/JSTQE.2010.2048893
[28] Cherkassky, V. S. et al. Imaging techniques for a high-power THz free electron laser. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment 543, 102-109 (2005).
[29] Choporova, Y. Y., Knyazev, B. A. & Mitkov, M. S. Classical Holography in the Terahertz Range: Recording and Reconstruction Techniques. IEEE Transactions on Terahertz Science and Technology 5, 836-844 (2015). doi: 10.1109/TTHZ.2015.2460465
[30] Knyazev, B. A. et al. Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application. Journal of Infrared,Millimeter,and Terahertz Waves 32, 1207-1222 (2011). doi: 10.1007/s10762-011-9773-x
[31] Vinokurov, N. A. et al. Visualization of radiation from a high-power terahertz free electron laser with a thermosensitive interferometer. Technical Physics 52, 911-919 (2007). doi: 10.1134/S1063784207070134
[32] Knyazev, B. A. & Kubarev, V. V. Wide-field imaging using a tunable terahertz free electron laser and a thermal image plate. Infrared Physics & Technology 52, 14-18 (2009).
[33] Lee, A. W. M. et al. Real-time terahertz imaging over a standoff distance (>25meters). Applied Physics Letters 89, 141125 (2006). doi: 10.1063/1.2360210
[34] Dem’yanenko, M. A. et al. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser. Applied Physics Letters 92, 131116 (2008). doi: 10.1063/1.2898138
[35] Dem’yanenko, M. A. et al. Microbolometer detector arrays for the infrared and terahertz ranges. Journal of Optical Technology 76, 739 (2009). doi: 10.1364/JOT.76.000739
[36] Gou, J. et al. Spiral Antenna-Coupled Microbridge Structures for THz Application. Nanoscale Research Letters 12, 91 (2017). doi: 10.1186/s11671-017-1857-7
[37] Xu, L. et al. Imaging analysis of digital holography. Optics Express 13, 2444 (2005). doi: 10.1364/OPEX.13.002444
[38] Choporova, Y. Y. & Knyazev, B. A. Holography as an ATR THz imaging technique. In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pages 1–1. IEEE, sep 2018.
[39] Wang, D. Y. et al. Dynamic full-field refractive index distribution measurements using total internal reflection terahertz digital holography. Photonics Research 10, 289 (2022). doi: 10.1364/PRJ.442388
[40] Petrov, N. V. et al. Terahertz phase retrieval imaging in reflection. Optics Letters 45, 4168-4171 (2020). doi: 10.1364/OL.397935
[41] Hariharan, P. Optical Holography. Cambridge University Press, jul 1996.
[42] Soifer, V. A. Computer Design of Diffractive Optics. Woodhead Publishing, 2012.
[43] Wyrowski, F. Digital holography: diffractive optics on the basis of scalar diffraction theory. Proceedings of Workshop on Digital Holography, Vol. 1718 Prague, Czech Republic: Society of Photo-Optical Instrumentation Engineers, 1993.
[44] Schnars, U. & Jüptner, W. P. Digital recording and numerical reconstruction of holograms. Measurement science and technology 13, R85 (2002). doi: 10.1088/0957-0233/13/9/201
[45] Sypek, M. et al. Highly efficient broadband double-sided Fresnel lens for THz range. Optics Letters 37, 2214 (2012). doi: 10.1364/OL.37.002214
[46] Furlan, W. D. et al. 3D printed diffractive terahertz lenses. Optics Letters 41, 1748 (2016). doi: 10.1364/OL.41.001748
[47] Walsby, E. D. et al. Imprinted diffractive optics for terahertz radiation. Optics Letters 32, 1141 (2007). doi: 10.1364/OL.32.001141
[48] Vedernikov, V. M. et al. Diffractive elements for a free electron laser. Optoelectronics,Instrumentation and Data Processing 46, 365-375 (2010). doi: 10.3103/S8756699010040102
[49] Rogalin, V. E., Kaplunov, I. A. & Kropotov, G. I. Optical Materials for the THz Range. Optics and Spectroscopy 125, 1053-1064 (2018). doi: 10.1134/S0030400X18120172
[50] Agafonov, A. N. et al. Elements of the Terahertz Power Reflective Optics with Free-Form Surfaces. Optoelectronics,Instrumentation and Data Processing 55, 148-153 (2019). doi: 10.3103/S8756699019020067
[51] Walsby, E. D. et al. Multilevel silicon diffractive optics for terahertz waves. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, 2780 (2002).
[52] Agafonov, A. N. et al. Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectronics,Instrumentation and Data Processing 49, 189-195 (2013). doi: 10.3103/S875669901302012X
[53] Komlenok, M. S. et al. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation. Quantum Electronics 45, 933-936 (2015). doi: 10.1070/QE2015v045n10ABEH015890
[54] Sukhadolau, A. V. et al. Thermal conductivity of CVD diamond at elevated temperatures. Diamond and Related Materials 14, 589-593 (2005). doi: 10.1016/j.diamond.2004.12.002
[55] Kononenko, V. V. et al. Diamond diffraction optics for CO 2 lasers. Quantum Electronics 29, 9-10 (1999). doi: 10.1070/QE1999v029n01ABEH001402
[56] Komlenok, M. S. et al. Silicon diffractive optical element with piecewise continuous profile to focus high-power terahertz radiation into a square area. Journal of the Optical Society of America B 38, B9 (2021). doi: 10.1364/JOSAB.425286
[57] Komlenok, M. et al. Diamond diffractive lens with a continuous profile for powerful terahertz radiation. Optics Letters 46, 340-343 (2021). doi: 10.1364/OL.414097
[58] Cherkassky, V. S. et al. Techniques for introscopy of condense matter in terahertz spectral region. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment 575, 63-67 (2007).
[59] Agafonov, A. N. et al. Optical elements for focusing of terahertz laser radiation in a given two-dimensional domain. Optical Memory and Neural Networks 23, 185-190 (2014). doi: 10.3103/S1060992X14030023
[60] Duparré, M. et al. Investigation of computer-generated diffractive beam shapers for flattening of single-modal CO2 laser beams. Applied Optics 34, 2489 (1995). doi: 10.1364/AO.34.002489
[61] Tukmakov, K. N. et al. A continuous-profile diffractive focuser for terahertz radiation fabricated by laser ablation of silicon. Computer Optics 42, 941-946 (2018). doi: 10.18287/2412-6179-2018-42-6-941-946
[62] Agafonov, A. N. et al. Focusing of Novosibirsk Free Electron Laser (NovoFEL) radiation into paraxial segment. Journal of Modern Optics 63, 1051-1054 (2016). doi: 10.1080/09500340.2015.1118163
[63] Kachalov, D. G. et al. Application of the direct search in solving a problem of forming longitudinal distribution of intensity. Journal of Modern Optics 58, 69-76 (2011). doi: 10.1080/09500340.2010.536592
[64] Idehara, T. et al. The gyrotrons as promising radiation sources for thz sensing and imaging. Applied Sciences 10, 980 (2020). doi: 10.3390/app10030980
[65] Kumar, N. et al. A review on the sub-thz/thz gyrotrons. Infrared Physics & Technology 76, 38-51 (2016).
[66] Soifer, V. A. & Golub, M. A. Laser beam mode selection by computer generated holograms. CRC Press, 1994.
[67] Golub, M. A. et al. Spatial phase filters matched to transverse modes. Soviet Journal of Quantum Electronics 18, 392-393 (1988). doi: 10.1070/QE1988v018n03ABEH011528
[68] Agafonov, A. N. et al. Control of transverse modal spectrum of terahertz laser irradiation by binary silicon optical elements. Computer Optics 38, 763-769 (2014).
[69] Knyazev, B. A., Kulipanov, G. N. & Vinokurov, N. A. Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements. Measurement Science and Technology 21, 054017 (2010). doi: 10.1088/0957-0233/21/5/054017
[70] Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 3, 161 (2011). doi: 10.1364/AOP.3.000161
[71] Molina-Terriza, G., Torres, J. & Torner, L. Twisted photons. Nature Physics 3, 305-310 (2007). doi: 10.1038/nphys607
[72] Alekseev, A. N. et al. Conversion of Hermite-Gaussian and Laguerre-Gaussian beams in an astigmatic optical system. 1. Experiment. Technical Physics Letters 24, 694-696 (1998). doi: 10.1134/1.1262248
[73] Khonina, S. N. et al. Trochoson. Optics Communications 91, 158-162 (1992). doi: 10.1016/0030-4018(92)90430-Y
[74] Knyazev, B. A. et al. Generation of terahertz surface plasmon polaritons using nondiffractive bessel beams with orbital angular momentum. Physical review letters 115, 163901 (2015). doi: 10.1103/PhysRevLett.115.163901
[75] Choporova, Y. Y. et al. High-power Bessel beams with orbital angular momentum in the terahertz range. Physical Review A 96, 023846 (2017). doi: 10.1103/PhysRevA.96.023846
[76] Volodkin, B. et al. Fabrication and characterization of diffractive phase plates for forming high-power terahertz vortex beams using free electron laser radiation. Optical and Quantum Electronics 48, 223 (2016). doi: 10.1007/s11082-016-0496-z
[77] Knyazev, B. A. et al. Transmission of high-power terahertz beams with orbital angular momentum through atmosphere. Proceedings of 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz); IEEE, 2016.
[78] Rubinsztein-Dunlop, H. et al. Roadmap on structured light. Journal of Optics 19, 013001 (2017). doi: 10.1088/2040-8978/19/1/013001
[79] Choporova, Y. Y. et al. Two channel terahertz communication based on spatial mode multiplexing. Proceedings of 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz),IEEE, 2019.
[80] Knyazev, B. et al. Quasi-Talbot effect with vortex beams and formation of vortex beamlet arrays. Optics Express 26, 14174 (2018). doi: 10.1364/OE.26.014174
[81] Shinmura, Y., Ezoe, H. & Yoshikawa, M. Observation of mode in graded-index optical fibers with bending and cross talk in MDM. IEICE Trans. Electron. E80-C, 828-830 (1997).
[82] Pavelyev, V. S. et al. Silicon subwavelength axicons for terahertz beam polarization transformation. Journal of Physics: Conference Series 1745, 012022 (2021). doi: 10.1088/1742-6596/1745/1/012022
[83] Talbot, H. F. Facts relating to optical science. No. IV. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science 9, 401-407 (1836). doi: 10.1080/14786443608649032
[84] Cowley, J. M. & Moodie, A. F. Fourier Images: Ⅱ -The Out-of-focus Patterns. Proceedings of the Physical Society. Section B 70, 497-504 (1957). doi: 10.1088/0370-1301/70/5/306
[85] Winthrop, J. T. & Worthington, C. R. Theory of Fresnel Images I Plane Periodic Objects in Monochromatic Light. Journal of the Optical Society of America 55, 373 (1965). doi: 10.1364/JOSA.55.000373
[86] Montgomery, W. D. Self-Imaging Objects of Infinite Aperture. Journal of the Optical Society of America 57, 772 (1967). doi: 10.1364/JOSA.57.000772
[87] Lohmann, A. W., Knuppertz, H. & Jahns, J. Fractional Montgomery effect: a self-imaging phenomenon. Journal of the Optical Society of America A 22, 1500 (2005). doi: 10.1364/JOSAA.22.001500
[88] Wen, J. M., Zhang, Y. & Xiao, M. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Advances in Optics and Photonics 5, 83 (2013). doi: 10.1364/AOP.5.000083
[89] Knyazev, B., Cherkassky, V. & Kameshkov, O. “Perfect” Terahertz Vortex Beams Formed Using Diffractive Axicons and Prospects for Excitation of Vortex Surface Plasmon Polaritons. Applied Sciences 11, 717 (2021). doi: 10.3390/app11020717
[90] Kotelnikov, I. A., Kameshkov, O. E. & Knyazev, B. A. Diffraction of bessel beams on 2D amplitude gratings—a new branch in the talbot effect study. Journal of Optics 22, 065603 (2020). doi: 10.1088/2040-8986/ab877d
[91] Ikonnikov, D. A. et al. Two-dimensional talbot effect of the optical vortices and their spatial evolution. Scientific Reports 10, 1-10 (2020). doi: 10.1038/s41598-020-77418-y
[92] Ikonnikov, D. A. et al. 3d optical vortex lattices. Annalen der Physik 533, 2100114 (2021).
[93] Zhan, Q. W. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 1, 1 (2009). doi: 10.1364/AOP.1.000001
[94] Suzuki, M. et al. Comprehensive quantitative analysis of vector beam states based on vector field reconstruction. Scientific Reports 9, 9979 (2019). doi: 10.1038/s41598-019-46390-7
[95] Saito, Y. et al. z-polarization sensitive detection in micro-raman spectroscopy by radially polarized incident light. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy,Including Higher Order Processes,and also Brillouin and Rayleigh Scattering 39, 1643-1648 (2008).
[96] Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical review letters 96, 163905 (2006). doi: 10.1103/PhysRevLett.96.163905
[97] Marrucci, L. et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. Journal of Optics 13, 064001 (2011). doi: 10.1088/2040-8978/13/6/064001
[98] Rubano, A. et al. Q-plate technology: a progress review. JOSA B 36, D70-D87 (2019). doi: 10.1364/JOSAB.36.000D70
[99] Ostrovsky, A. S., Rickenstorff-Parrao, C. & Arrizón, V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Optics Letters 38, 534 (2013). doi: 10.1364/OL.38.000534
[100] Kotlyar, V. V., Kovalev, A. A. & Porfirev, A. P. Optimal phase element for generating a perfect optical vortex. Journal of the Optical Society of America A 33, 2376 (2016). doi: 10.1364/JOSAA.33.002376
[101] Gerasimov, V. V. et al. Vortex surface plasmon polaritons on a cylindrical waveguide: generation, propagation, and diffraction. Journal of Optics 23, 10LT01 (2021). doi: 10.1088/2040-8986/ac1fc4
[102] Knyazev,B. A.et al. Experiments on Generation of VortexSurface Plasmon Polaritons on Plane and Cylindrical Conductors in Mid-Infrared and THz Ranges. Proceedings of 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), IEEE, 2020.
[103] Knyazev, B. A. et al. Feasibility of generating surface plasmon polaritons with a given orbital momentum on cylindrical waveguides using diffractive optical elements. Computer Optics 43, 992-1000 (2019). doi: 10.18287/2412-6179-2019-43-6-992-1000
[104] Wang, Z. X., Zhang, N. & Yuan, X. C. High-volume optical vortex multiplexing and demultiplexing for free-space optical communication. Optics Express 19, 482 (2011). doi: 10.1364/OE.19.000482
[105] Soifer, V. A. Methods for Computer Design of Diffractive Optical Elements. New York: John Wiley & Sons, Inc., 2001.