| [1] | Gorai, P., Stevanović, V. & Toberer E. S. Computationally guided discovery of thermoelectric materials. Nature Reviews Materials 2, 17053 (2017). doi: 10.1038/natrevmats.2017.53 |
| [2] | Ayachi, S., He, X. & Yoon, H. J. Solar thermoelectricity for power generation. Advanced Energy Materials 13, 2300937 (2023). doi: 10.1002/aenm.202300937 |
| [3] | Hu, G. Y., Edwards, H. & Lee, M. Silicon integrated circuit thermoelectric generators with a high specific power generation capacity. Nature Electronics 2, 300-306 (2019). doi: 10.1038/s41928-019-0271-9 |
| [4] | Lv, S. et al. High-performance terrestrial solar thermoelectric generators without optical concentration for residential and commercial rooftops. Energy Conversion and Management 196, 69-76 (2019). doi: 10.1016/j.enconman.2019.05.089 |
| [5] | Zhu, X. Y., Yu, Y. & Li, F. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future. Construction and Building Materials 228, 116818 (2019). doi: 10.1016/j.conbuildmat.2019.116818 |
| [6] | Zhou, Y. Z. et al. Recent progress of halide perovskites for thermoelectric application. Nano Energy 94, 106949 (2022). doi: 10.1016/j.nanoen.2022.106949 |
| [7] | Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Materials 10, 532-538 (2011). doi: 10.1038/nmat3013 |
| [8] | Kim, F. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy 3, 301-309 (2018). |
| [9] | Wei, R. et al. 15-fold increase in solar thermoelectric generator performance through femtosecond-laser spectral engineering and thermal management. Light: Science & Applications, 14, 268 (2025). |
| [10] | Zhou, C. J. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nature Materials 20, 1378-1384 (2021). doi: 10.1038/s41563-021-01064-6 |