[1] Zhang, Z. et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nat. Methods 12, 935–938 (2015). doi: 10.1038/nmeth.3528
[2] Dong, B. et al. Super-resolution spectroscopic microscopy via photon localization. Nat. Commun. 7, 12290 (2016). doi: 10.1038/ncomms12290
[3] Bongiovanni, M. N. et al. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat. Commun. 7, 13544 (2016). doi: 10.1038/ncomms13544
[4] Zhang, Y. et al. Far-red photoactivatable BODIPYs for the super-resolution imaging of live cells. J. Am. Chem. Soc. 140, 12741–12745 (2018). doi: 10.1021/jacs.8b09099
[5] Song, K. H. et al. Three-dimensional biplane spectroscopic single-molecule localization microscopy. Optica 6, 709–715 (2019). doi: 10.1364/OPTICA.6.000709
[6] Zhang, Y. et al. Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion. Appl. Opt. 58, 2248–2255 (2019). doi: 10.1364/AO.58.002248
[7] Lee, J. E. et al. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. Nano Lett. 18, 7494–7501 (2018). doi: 10.1021/acs.nanolett.8b02916
[8] Dong, B. et al. Parallel three-dimensional tracking of quantum rods using polarization-sensitive spectroscopic photon localization microscopy. ACS Photonics 4, 1747–1752 (2017). doi: 10.1021/acsphotonics.7b00294
[9] Kakizuka, T. et al. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots. Biomed. Opt. Express 7, 2475–2493 (2016). doi: 10.1364/BOE.7.002475
[10] Huang, T. et al. Simultaneous multicolor single-molecule tracking with single-laser excitation via spectral imaging. Biophys. J. 114, 301–310 (2018). doi: 10.1016/j.bpj.2017.11.013
[11] Rieger, B. & Stallinga, S. The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem 15, 664–670 (2014). doi: 10.1002/cphc.201300711
[12] Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014). doi: 10.1038/nmeth.2843
[13] Song, K. H. et al. Theoretical analysis of spectral precision in spectroscopic single-molecule localization microscopy. Rev. Sci. Instrum. 89, 123703 (2018). doi: 10.1063/1.5054144
[14] Ovesný, M. et al. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014). doi: 10.1093/bioinformatics/btu202
[15] Long, F., Zeng, S. Q. & Huang, Z. L. Effects of fixed pattern noise on single molecule localization microscopy. Phys. Chem. Chem. Phys. 16, 21586–21594 (2014). doi: 10.1039/C4CP02280G
[16] Banterle, N. et al. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183, 363–367 (2013). doi: 10.1016/j.jsb.2013.05.004
[17] Kao, H. P. & Verkman, A. S. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291–1300 (1994). doi: 10.1016/S0006-3495(94)80601-0
[18] Ebeling, C. G. et al. Increased localization precision by interference fringe analysis. Nanoscale 7, 10430–10437 (2015). doi: 10.1039/C5NR01927C
[19] Dempsey, G. T. et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011). doi: 10.1038/nmeth.1768