[1] |
Zhang, Y. et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nature. Nat. Commun. 8, 15512 (2017). |
[2] |
Li, P. G. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020). doi: 10.1038/s41467-020-17174-9 |
[3] |
Oike, H. et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62–66 (2016). doi: 10.1038/nphys3506 |
[4] |
Tress, W. et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4, 568–574 (2019). doi: 10.1038/s41560-019-0400-8 |
[5] |
Russ, B. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016). doi: 10.1038/natrevmats.2016.50 |
[6] |
Skripka, A. et al. Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing. Nanoscale 9, 3079–3085 (2017). doi: 10.1039/C6NR08472A |
[7] |
Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015). doi: 10.1038/nri3843 |
[8] |
Krueger, T. et al. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis—a NanoSIMS study. Sci. Rep. 8, 12710 (2018). doi: 10.1038/s41598-018-31094-1 |
[9] |
Haq, T. et al. Optimizing the methodology for measuring supraclavicular skin temperature using infrared thermography; Implications for measuring brown adipose tissue activity in humans. Sci. Rep. 7, 11934 (2017). doi: 10.1038/s41598-017-11537-x |
[10] |
Martins, S. et al. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun. 8, 309 (2017). doi: 10.1038/s41467-017-00355-4 |
[11] |
Tanimoto, R. et al. Detection of temperature difference in neuronal cells. Sci. Rep. 6, 22071 (2016). doi: 10.1038/srep22071 |
[12] |
Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019). doi: 10.1038/s41558-018-0367-7 |
[13] |
MacFadden, D. R. et al. Antibiotic resistance increases with local temperature. Nat. Clim. Change 8, 510–514 (2018). doi: 10.1038/s41558-018-0161-6 |
[14] |
Koven, C. D. et al. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017). doi: 10.1038/nclimate3421 |
[15] |
Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26, 1037–1040 (2020). doi: 10.1038/s41591-020-0916-2 |
[16] |
Dietrich, W. D. & Bramlett, H. M. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation. Brain Res. 1640, 94–103 (2016). doi: 10.1016/j.brainres.2015.12.034 |
[17] |
Stocchetti, N. et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 16, 452–464 (2017). doi: 10.1016/S1474-4422(17)30118-7 |
[18] |
Zhu, X. J. et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016). doi: 10.1038/ncomms10437 |
[19] |
Nam, J. et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018). doi: 10.1038/s41467-018-03473-9 |
[20] |
Zhu, X. J. et al. Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 9, 2176 (2018). doi: 10.1038/s41467-018-04571-4 |
[21] |
Farooq, N., Ilyas, U., Adeel M. & Jabbar, S. Ground robot for alive human detection in rescue operations. In Proc. 2018 International Conference on Intelligent Informatics and Biomedical Sciences. 116–122 (IEEE, Bangkok, 2018). |
[22] |
Golan, Y. et al. Online Robot navigation using continuously updated artificial temperature gradients. IEEE Robot. Autom. Lett. 2, 1280–1287 (2017). doi: 10.1109/LRA.2017.2665682 |
[23] |
Yang, H. et al. Soft thermal sensor with mechanical adaptability. Adv. Mater. 28, 9175–9181 (2016). doi: 10.1002/adma.201602994 |
[24] |
Wang, X. Q. et al. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32, 2000351 (2020). doi: 10.1002/adma.202000351 |
[25] |
Liu, W. J. & Yang, B. Z. Thermography techniques for integrated circuits and semiconductor devices. Sens. Rev. 27, 298–309 (2007). doi: 10.1108/02602280710821434 |
[26] |
Bai, T. T. & Gu, N. Micro/nanoscale thermometry for cellular thermal sensing. Small 12, 4590–4610 (2016). doi: 10.1002/smll.201600665 |
[27] |
Guan, X. W., Wang, X. Y. & Frandsen, L. H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 24, 16349–16356 (2016). doi: 10.1364/OE.24.016349 |
[28] |
Zhang, Y., Zou, J. & He, J. J. Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering. Opt. Express 26, 26057–26064 (2018). doi: 10.1364/OE.26.026057 |
[29] |
Hiltunen, M. et al. Polymeric slot waveguide interferometer for sensor applications. Opt. Express 22, 7229–7237 (2014). doi: 10.1364/OE.22.007229 |
[30] |
Wang, J. et al. Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber. Opt. Express 28, 1456–1471 (2020). doi: 10.1364/OE.377116 |
[31] |
Geng, Y. et al. Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber. Opt. Express 26, 27907–27916 (2018). doi: 10.1364/OE.26.027907 |
[32] |
Liu, Y. C. et al. Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber. J. Lightwave Technol. 38, 919–928 (2020). doi: 10.1109/JLT.2019.2949067 |
[33] |
He, H. J. et al. Novel birefringence interrogation for Sagnac loop interferometer sensor with unlimited linear measurement range. Opt. Express 25, 6832–6839 (2017). doi: 10.1364/OE.25.006832 |
[34] |
Yang, Y. Q. et al. Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity. Opt. Express 25, 33290–33296 (2017). doi: 10.1364/OE.25.033290 |
[35] |
Bai, Y. T. et al. Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2. J. Lightwave Technol. 38, 840–845 (2020). doi: 10.1109/JLT.2019.2947644 |
[36] |
Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939 |
[37] |
Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 7, 168–240 (2015). doi: 10.1364/AOP.7.000168 |
[38] |
Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008). doi: 10.1038/nmeth.1221 |
[39] |
Venkatakrishnarao, D. et al. Advanced organic and polymer whispering-gallery-mode microresonators for enhanced nonlinear optical light. Adv. Opt. Mater. 6, 1800343 (2018). doi: 10.1002/adom.201800343 |
[40] |
Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002). doi: 10.1063/1.1482797 |
[41] |
Righini, G. C. & Soria, S. Biosensing by WGM microspherical resonators. Sensors 16, 905 (2016). doi: 10.3390/s16060905 |
[42] |
Shitikov, A. E. et al. Billion Q-factor in silicon WGM resonators. Optica 5, 1525–1528 (2018). doi: 10.1364/OPTICA.5.001525 |
[43] |
Xiao, Y. F. & Gong, Q. H. Optical microcavity: from fundamental physics to functional photonics devices. Sci. Bull. 61, 185–186 (2016). doi: 10.1007/s11434-016-0996-z |
[44] |
Jiang, X. F. et al. Whispering-gallery sensors. Matter 3, 371–392 (2020). doi: 10.1016/j.matt.2020.07.008 |
[45] |
Chen, X. G. et al. Packaged droplet microresonator for thermal sensing with high sensitivity. Sensors 18, 3881 (2018). doi: 10.3390/s18113881 |
[46] |
Wang, Y. et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Opt. Express 25, 918–926 (2017). doi: 10.1364/OE.25.000918 |
[47] |
Xu, L. H. et al. High-Q silk fibroin whispering gallery microresonator. Opt. Express 24, 20825–20830 (2016). doi: 10.1364/OE.24.020825 |
[48] |
Yang, Z. S. et al. Low temperature fabrication of chalcogenide microsphere resonators for thermal sensing. IEEE Photonics Technol. Lett. 29, 66–69 (2017). doi: 10.1109/LPT.2016.2628810 |
[49] |
Xu, X. Y. et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light. : Sci. Appl. 7, 62 (2018). doi: 10.1038/s41377-018-0063-4 |
[50] |
Dong, C. H. et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Appl. Phys. Lett. 94, 231119 (2009). doi: 10.1063/1.3152791 |
[51] |
Li, B. B. et al. On chip, high-sensitivity thermal sensor based on high- Q polydimethylsiloxane-coated microresonator. Appl. Phys. Lett. 96, 251109 (2010). doi: 10.1063/1.3457444 |
[52] |
Murugan, G. S., Wilkinson, J. S. & Zervas, M. N. Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add–drop filters. Opt. Lett. 35, 1893–1895 (2010). doi: 10.1364/OL.35.001893 |
[53] |
Pöllinger, M. et al. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett. 103, 053901 (2009). doi: 10.1103/PhysRevLett.103.053901 |
[54] |
Monifi, F. et al. Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix. IEEE Photonics Technol. Lett. 25, 1458–1461 (2013). doi: 10.1109/LPT.2013.2266573 |
[55] |
Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003). doi: 10.1038/nature01371 |
[56] |
Goodwin, G. C., Graebe, S. F. & Salgado, M. E. Control System Design (Prentice Hall PTR, 2000). |
[57] |
Talbot, P. et al. Thermal transients during the evaporation of a spherical liquid drop. Int. J. Heat. Mass Transf. 97, 803–817 (2016). doi: 10.1016/j.ijheatmasstransfer.2015.12.075 |
[58] |
Qi, W. L., Li, J. H. & Weisensee, P. B. Evaporation of sessile water droplets on horizontal and vertical biphobic patterned surfaces. Langmuir 35, 17185–17192 (2019). doi: 10.1021/acs.langmuir.9b02853 |
[59] |
Itaru, M. & Kunihide, M. Heat transfer characteristics of evaporation of a liquid droplet on heated surfaces. Int. J. Heat. Mass Transf. 21, 605–613 (1978). doi: 10.1016/0017-9310(78)90057-1 |
[60] |
Tsai, P. et al. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Phys. Rev. Lett. 104, 116102 (2010). doi: 10.1103/PhysRevLett.104.116102 |
[61] |
Cavusoglu, A. H. et al. Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017). doi: 10.1038/s41467-017-00581-w |
[62] |
He, M. H., Liao, D. & Qiu, H. H. Multicomponent droplet evaporation on chemical micro-patterned surfaces. Sci. Rep. 7, 41897 (2017). doi: 10.1038/srep41897 |
[63] |
Davidson, Z. S. et al. Deposition and drying dynamics of liquid crystal droplets. Nat. Commun. 8, 15642 (2017). doi: 10.1038/ncomms15642 |
[64] |
Zhang, X. Y. et al. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces. ChemPhysChem 7, 2067–2070 (2006). doi: 10.1002/cphc.200600229 |
[65] |
Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). doi: 10.1038/nnano.2014.180 |
[66] |
Heylman, K. D. et al. Optical microresonators as single-particle absorption spectrometers. Nat. Photonics 10, 788–795 (2016). doi: 10.1038/nphoton.2016.217 |
[67] |
Vincent, S., Subramanian, S. & Vollmer, F. Optoplasmonic characterisation of reversible disulfide interactions at single thiol sites in the attomolar regime. Nat. Commun. 11, 2043 (2020). doi: 10.1038/s41467-020-15822-8 |
[68] |
Guo, Z. H. et al. Hyperboloid-drum microdisk laser biosensors for ultrasensitive detection of human IgG. Small 16, 2000239 (2020). doi: 10.1002/smll.202000239 |
[69] |
Kim, Y. & Lee, H. On-chip label-free biosensing based on active whispering gallery mode resonators pumped by a light-emitting diode. Opt. Express 27, 34405–34415 (2019). doi: 10.1364/OE.27.034405 |
[70] |
Zhu, J. G. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4, 46–49 (2010). doi: 10.1038/nphoton.2009.237 |
[71] |
Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities. Adv. Mater. 29, 1604920 (2017). doi: 10.1002/adma.201604920 |
[72] |
Ward, J. M. et al. Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica 5, 674–677 (2018). doi: 10.1364/OPTICA.5.000674 |
[73] |
Zhu, J. G. et al. Polymer encapsulated microcavity optomechanical magnetometer. Sci. Rep. 7, 8896 (2017). doi: 10.1038/s41598-017-08875-1 |
[74] |
Zhang, Y. N. et al. Magnetic field sensor based on ring WGM resonator infiltrated with magnetic fluid. J. Magn. Magn. Mater. 493, 165701 (2020). doi: 10.1016/j.jmmm.2019.165701 |
[75] |
Mahmood, A. et al. Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid. Opt. Lett. 40, 4983–4986 (2015). doi: 10.1364/OL.40.004983 |
[76] |
Pan, J. S. et al. Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photonics Res. 8, 303–310 (2020). doi: 10.1364/PRJ.376640 |
[77] |
Li, H. et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 4, 4496 (2014). doi: 10.1038/srep04496 |
[78] |
Caucheteur, C. et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 7, 13371 (2016). doi: 10.1038/ncomms13371 |
[79] |
Wang, Y. et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 26, 1910–1917 (2018). doi: 10.1364/OE.26.001910 |
[80] |
Schubert, M. et al. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15, 5647–5652 (2015). doi: 10.1021/acs.nanolett.5b02491 |
[81] |
Wondimu, S. F. et al. Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules. Lab. A Chip 17, 1740–1748 (2017). doi: 10.1039/C6LC01556E |
[82] |
Barot, D., Wang, G. & Duan, L. Z. High-resolution dynamic strain sensor using a polarization-maintaining fiber bragg grating. IEEE Photonics Technol. Lett. 31, 709–712 (2019). doi: 10.1109/LPT.2019.2905951 |
[83] |
Liu, Z. H. et al. Whispering gallery mode temperature sensor of liquid microresonastor. Opt. Lett. 41, 4649–4652 (2016). doi: 10.1364/OL.41.004649 |
[84] |
Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001). doi: 10.1119/1.1286663 |
[85] |
Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5, 909–914 (2009). doi: 10.1038/nphys1425 |
[86] |
Özdemir, Ş. K. et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl Acad. Sci. USA 111, E3836–E3844 (2014). doi: 10.1073/pnas.1408283111 |
[87] |
Reynolds, T. et al. Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum. Anal. Chem. 88, 4036–4040 (2016). doi: 10.1021/acs.analchem.6b00365 |
[88] |
Liao, J., Qavi, A. J., Dong, R. & Yang L. Packaging of optofluidic microbubble resonator sensors. In (eds Guicheteau, J. A. & Howle, C. R. ) Proc. SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX 110101A (SPIE, Baltimore, 2019). |
[89] |
Lu, Q. J. et al. Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing. Opt. Express 24, 20855–20861 (2016). doi: 10.1364/OE.24.020855 |
[90] |
Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000). doi: 10.1103/PhysRevLett.85.74 |
[91] |
Tang, T. et al. Packaged optofluidic microbubble resonators for optical sensing. Appl. Opt. 55, 395–399 (2016). doi: 10.1364/AO.55.000395 |
[92] |
Chen, Z. M. et al. Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. Opt. Express 27, 36932–36940 (2019). doi: 10.1364/OE.27.036932 |
[93] |
Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004). doi: 10.1364/OPEX.12.004742 |