[1] Zhang, Y. et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nature. Nat. Commun. 8, 15512 (2017).
[2] Li, P. G. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020). doi: 10.1038/s41467-020-17174-9
[3] Oike, H. et al. Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Phys. 12, 62–66 (2016). doi: 10.1038/nphys3506
[4] Tress, W. et al. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 4, 568–574 (2019). doi: 10.1038/s41560-019-0400-8
[5] Russ, B. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016). doi: 10.1038/natrevmats.2016.50
[6] Skripka, A. et al. Double rare-earth nanothermometer in aqueous media: opening the third optical transparency window to temperature sensing. Nanoscale 9, 3079–3085 (2017). doi: 10.1039/C6NR08472A
[7] Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015). doi: 10.1038/nri3843
[8] Krueger, T. et al. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis—a NanoSIMS study. Sci. Rep. 8, 12710 (2018). doi: 10.1038/s41598-018-31094-1
[9] Haq, T. et al. Optimizing the methodology for measuring supraclavicular skin temperature using infrared thermography; Implications for measuring brown adipose tissue activity in humans. Sci. Rep. 7, 11934 (2017). doi: 10.1038/s41598-017-11537-x
[10] Martins, S. et al. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun. 8, 309 (2017). doi: 10.1038/s41467-017-00355-4
[11] Tanimoto, R. et al. Detection of temperature difference in neuronal cells. Sci. Rep. 6, 22071 (2016). doi: 10.1038/srep22071
[12] Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019). doi: 10.1038/s41558-018-0367-7
[13] MacFadden, D. R. et al. Antibiotic resistance increases with local temperature. Nat. Clim. Change 8, 510–514 (2018). doi: 10.1038/s41558-018-0161-6
[14] Koven, C. D. et al. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017). doi: 10.1038/nclimate3421
[15] Menni, C. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 26, 1037–1040 (2020). doi: 10.1038/s41591-020-0916-2
[16] Dietrich, W. D. & Bramlett, H. M. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation. Brain Res. 1640, 94–103 (2016). doi: 10.1016/j.brainres.2015.12.034
[17] Stocchetti, N. et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 16, 452–464 (2017). doi: 10.1016/S1474-4422(17)30118-7
[18] Zhu, X. J. et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016). doi: 10.1038/ncomms10437
[19] Nam, J. et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9, 1074 (2018). doi: 10.1038/s41467-018-03473-9
[20] Zhu, X. J. et al. Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 9, 2176 (2018). doi: 10.1038/s41467-018-04571-4
[21] Farooq, N., Ilyas, U., Adeel M. & Jabbar, S. Ground robot for alive human detection in rescue operations. In Proc. 2018 International Conference on Intelligent Informatics and Biomedical Sciences. 116–122 (IEEE, Bangkok, 2018).
[22] Golan, Y. et al. Online Robot navigation using continuously updated artificial temperature gradients. IEEE Robot. Autom. Lett. 2, 1280–1287 (2017). doi: 10.1109/LRA.2017.2665682
[23] Yang, H. et al. Soft thermal sensor with mechanical adaptability. Adv. Mater. 28, 9175–9181 (2016). doi: 10.1002/adma.201602994
[24] Wang, X. Q. et al. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32, 2000351 (2020). doi: 10.1002/adma.202000351
[25] Liu, W. J. & Yang, B. Z. Thermography techniques for integrated circuits and semiconductor devices. Sens. Rev. 27, 298–309 (2007). doi: 10.1108/02602280710821434
[26] Bai, T. T. & Gu, N. Micro/nanoscale thermometry for cellular thermal sensing. Small 12, 4590–4610 (2016). doi: 10.1002/smll.201600665
[27] Guan, X. W., Wang, X. Y. & Frandsen, L. H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 24, 16349–16356 (2016). doi: 10.1364/OE.24.016349
[28] Zhang, Y., Zou, J. & He, J. J. Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering. Opt. Express 26, 26057–26064 (2018). doi: 10.1364/OE.26.026057
[29] Hiltunen, M. et al. Polymeric slot waveguide interferometer for sensor applications. Opt. Express 22, 7229–7237 (2014). doi: 10.1364/OE.22.007229
[30] Wang, J. et al. Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber. Opt. Express 28, 1456–1471 (2020). doi: 10.1364/OE.377116
[31] Geng, Y. et al. Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber. Opt. Express 26, 27907–27916 (2018). doi: 10.1364/OE.26.027907
[32] Liu, Y. C. et al. Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber. J. Lightwave Technol. 38, 919–928 (2020). doi: 10.1109/JLT.2019.2949067
[33] He, H. J. et al. Novel birefringence interrogation for Sagnac loop interferometer sensor with unlimited linear measurement range. Opt. Express 25, 6832–6839 (2017). doi: 10.1364/OE.25.006832
[34] Yang, Y. Q. et al. Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity. Opt. Express 25, 33290–33296 (2017). doi: 10.1364/OE.25.033290
[35] Bai, Y. T. et al. Simultaneous measurement of temperature and relative humidity based on a microfiber sagnac loop and MoS2. J. Lightwave Technol. 38, 840–845 (2020). doi: 10.1109/JLT.2019.2947644
[36] Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003). doi: 10.1038/nature01939
[37] Foreman, M. R., Swaim, J. D. & Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 7, 168–240 (2015). doi: 10.1364/AOP.7.000168
[38] Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008). doi: 10.1038/nmeth.1221
[39] Venkatakrishnarao, D. et al. Advanced organic and polymer whispering-gallery-mode microresonators for enhanced nonlinear optical light. Adv. Opt. Mater. 6, 1800343 (2018). doi: 10.1002/adom.201800343
[40] Vollmer, F. et al. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80, 4057–4059 (2002). doi: 10.1063/1.1482797
[41] Righini, G. C. & Soria, S. Biosensing by WGM microspherical resonators. Sensors 16, 905 (2016). doi: 10.3390/s16060905
[42] Shitikov, A. E. et al. Billion Q-factor in silicon WGM resonators. Optica 5, 1525–1528 (2018). doi: 10.1364/OPTICA.5.001525
[43] Xiao, Y. F. & Gong, Q. H. Optical microcavity: from fundamental physics to functional photonics devices. Sci. Bull. 61, 185–186 (2016). doi: 10.1007/s11434-016-0996-z
[44] Jiang, X. F. et al. Whispering-gallery sensors. Matter 3, 371–392 (2020). doi: 10.1016/j.matt.2020.07.008
[45] Chen, X. G. et al. Packaged droplet microresonator for thermal sensing with high sensitivity. Sensors 18, 3881 (2018). doi: 10.3390/s18113881
[46] Wang, Y. et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Opt. Express 25, 918–926 (2017). doi: 10.1364/OE.25.000918
[47] Xu, L. H. et al. High-Q silk fibroin whispering gallery microresonator. Opt. Express 24, 20825–20830 (2016). doi: 10.1364/OE.24.020825
[48] Yang, Z. S. et al. Low temperature fabrication of chalcogenide microsphere resonators for thermal sensing. IEEE Photonics Technol. Lett. 29, 66–69 (2017). doi: 10.1109/LPT.2016.2628810
[49] Xu, X. Y. et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light. : Sci. Appl. 7, 62 (2018). doi: 10.1038/s41377-018-0063-4
[50] Dong, C. H. et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Appl. Phys. Lett. 94, 231119 (2009). doi: 10.1063/1.3152791
[51] Li, B. B. et al. On chip, high-sensitivity thermal sensor based on high- Q polydimethylsiloxane-coated microresonator. Appl. Phys. Lett. 96, 251109 (2010). doi: 10.1063/1.3457444
[52] Murugan, G. S., Wilkinson, J. S. & Zervas, M. N. Optical excitation and probing of whispering gallery modes in bottle microresonators: potential for all-fiber add–drop filters. Opt. Lett. 35, 1893–1895 (2010). doi: 10.1364/OL.35.001893
[53] Pöllinger, M. et al. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett. 103, 053901 (2009). doi: 10.1103/PhysRevLett.103.053901
[54] Monifi, F. et al. Encapsulation of a fiber taper coupled microtoroid resonator in a polymer matrix. IEEE Photonics Technol. Lett. 25, 1458–1461 (2013). doi: 10.1109/LPT.2013.2266573
[55] Armani, D. K. et al. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003). doi: 10.1038/nature01371
[56] Goodwin, G. C., Graebe, S. F. & Salgado, M. E. Control System Design (Prentice Hall PTR, 2000).
[57] Talbot, P. et al. Thermal transients during the evaporation of a spherical liquid drop. Int. J. Heat. Mass Transf. 97, 803–817 (2016). doi: 10.1016/j.ijheatmasstransfer.2015.12.075
[58] Qi, W. L., Li, J. H. & Weisensee, P. B. Evaporation of sessile water droplets on horizontal and vertical biphobic patterned surfaces. Langmuir 35, 17185–17192 (2019). doi: 10.1021/acs.langmuir.9b02853
[59] Itaru, M. & Kunihide, M. Heat transfer characteristics of evaporation of a liquid droplet on heated surfaces. Int. J. Heat. Mass Transf. 21, 605–613 (1978). doi: 10.1016/0017-9310(78)90057-1
[60] Tsai, P. et al. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures. Phys. Rev. Lett. 104, 116102 (2010). doi: 10.1103/PhysRevLett.104.116102
[61] Cavusoglu, A. H. et al. Potential for natural evaporation as a reliable renewable energy resource. Nat. Commun. 8, 617 (2017). doi: 10.1038/s41467-017-00581-w
[62] He, M. H., Liao, D. & Qiu, H. H. Multicomponent droplet evaporation on chemical micro-patterned surfaces. Sci. Rep. 7, 41897 (2017). doi: 10.1038/srep41897
[63] Davidson, Z. S. et al. Deposition and drying dynamics of liquid crystal droplets. Nat. Commun. 8, 15642 (2017). doi: 10.1038/ncomms15642
[64] Zhang, X. Y. et al. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces. ChemPhysChem 7, 2067–2070 (2006). doi: 10.1002/cphc.200600229
[65] Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). doi: 10.1038/nnano.2014.180
[66] Heylman, K. D. et al. Optical microresonators as single-particle absorption spectrometers. Nat. Photonics 10, 788–795 (2016). doi: 10.1038/nphoton.2016.217
[67] Vincent, S., Subramanian, S. & Vollmer, F. Optoplasmonic characterisation of reversible disulfide interactions at single thiol sites in the attomolar regime. Nat. Commun. 11, 2043 (2020). doi: 10.1038/s41467-020-15822-8
[68] Guo, Z. H. et al. Hyperboloid-drum microdisk laser biosensors for ultrasensitive detection of human IgG. Small 16, 2000239 (2020). doi: 10.1002/smll.202000239
[69] Kim, Y. & Lee, H. On-chip label-free biosensing based on active whispering gallery mode resonators pumped by a light-emitting diode. Opt. Express 27, 34405–34415 (2019). doi: 10.1364/OE.27.034405
[70] Zhu, J. G. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4, 46–49 (2010). doi: 10.1038/nphoton.2009.237
[71] Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities. Adv. Mater. 29, 1604920 (2017). doi: 10.1002/adma.201604920
[72] Ward, J. M. et al. Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica 5, 674–677 (2018). doi: 10.1364/OPTICA.5.000674
[73] Zhu, J. G. et al. Polymer encapsulated microcavity optomechanical magnetometer. Sci. Rep. 7, 8896 (2017). doi: 10.1038/s41598-017-08875-1
[74] Zhang, Y. N. et al. Magnetic field sensor based on ring WGM resonator infiltrated with magnetic fluid. J. Magn. Magn. Mater. 493, 165701 (2020). doi: 10.1016/j.jmmm.2019.165701
[75] Mahmood, A. et al. Magnetic-field sensor based on whispering-gallery modes in a photonic crystal fiber infiltrated with magnetic fluid. Opt. Lett. 40, 4983–4986 (2015). doi: 10.1364/OL.40.004983
[76] Pan, J. S. et al. Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photonics Res. 8, 303–310 (2020). doi: 10.1364/PRJ.376640
[77] Li, H. et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 4, 4496 (2014). doi: 10.1038/srep04496
[78] Caucheteur, C. et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun. 7, 13371 (2016). doi: 10.1038/ncomms13371
[79] Wang, Y. et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 26, 1910–1917 (2018). doi: 10.1364/OE.26.001910
[80] Schubert, M. et al. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15, 5647–5652 (2015). doi: 10.1021/acs.nanolett.5b02491
[81] Wondimu, S. F. et al. Integration of digital microfluidics with whispering-gallery mode sensors for label-free detection of biomolecules. Lab. A Chip 17, 1740–1748 (2017). doi: 10.1039/C6LC01556E
[82] Barot, D., Wang, G. & Duan, L. Z. High-resolution dynamic strain sensor using a polarization-maintaining fiber bragg grating. IEEE Photonics Technol. Lett. 31, 709–712 (2019). doi: 10.1109/LPT.2019.2905951
[83] Liu, Z. H. et al. Whispering gallery mode temperature sensor of liquid microresonastor. Opt. Lett. 41, 4649–4652 (2016). doi: 10.1364/OL.41.004649
[84] Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001). doi: 10.1119/1.1286663
[85] Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5, 909–914 (2009). doi: 10.1038/nphys1425
[86] Özdemir, Ş. K. et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl Acad. Sci. USA 111, E3836–E3844 (2014). doi: 10.1073/pnas.1408283111
[87] Reynolds, T. et al. Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum. Anal. Chem. 88, 4036–4040 (2016). doi: 10.1021/acs.analchem.6b00365
[88] Liao, J., Qavi, A. J., Dong, R. & Yang L. Packaging of optofluidic microbubble resonator sensors. In (eds Guicheteau, J. A. & Howle, C. R. ) Proc. SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX 110101A (SPIE, Baltimore, 2019).
[89] Lu, Q. J. et al. Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing. Opt. Express 24, 20855–20861 (2016). doi: 10.1364/OE.24.020855
[90] Cai, M., Painter, O. & Vahala, K. J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000). doi: 10.1103/PhysRevLett.85.74
[91] Tang, T. et al. Packaged optofluidic microbubble resonators for optical sensing. Appl. Opt. 55, 395–399 (2016). doi: 10.1364/AO.55.000395
[92] Chen, Z. M. et al. Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. Opt. Express 27, 36932–36940 (2019). doi: 10.1364/OE.27.036932
[93] Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004). doi: 10.1364/OPEX.12.004742