| [1] | Demetris, A. J. & Ruppert, K. Pathologist’s perspective on liver needle biopsy size? Journal of Hepatology 39, 275–277 (2003). |
| [2] | Rӧcken, C. et al. Large-needle biopsy versus thin-needle biopsy in diagnostic pathology of liver diseases. Liver 21, 391-397 (2001). doi: 10.1034/j.1600-0676.2001.210605.x |
| [3] | Łukasiewicz, E. et al. Fine-needle versus core-needle biopsy – which one to choose in preoperative assessment of focal lesions in the breasts? Literature review. Journal of Ultrasonography 17, 267-274 (2017). doi: 10.15557/JoU.2017.0039 |
| [4] | Redvanly, R. D. Computed tomography-guided percutaneous biopsy of malignant hepatic lesions. In Liver malignancies: diagnostic and interventional radiology (eds Bartolozzi, C. & Lencioni, R. ) (Berlin: Springer, 1999), 499–509. |
| [5] | Kumar, M. et al. PWE-120 Liver Biopsy Using 16 G Needle: A Comparative Study. Gut 62, A179-A180 (2013). |
| [6] | Gomez- Macías, G. et al. Inadequate fine needle aspiration biopsy samples: Pathologists versus other specialists. CytoJournal 6, 9 (2009). doi: 10.4103/1742-6413.52831 |
| [7] | Park, S. M. et al. Fine-needle aspiration cytology as the first pathological diagnostic modality in breast lesions: A comparison with core needle biopsy. Basic and Applied Pathology 3, 1-6 (2010). doi: 10.1111/j.1755-9294.2009.01062.x |
| [8] | Tublin, M. E. et al. Prospective study of the impact of liver biopsy core size on specimen adequacy and procedural complications. American Journal of Roentgenology 210, 183-188 (2018). doi: 10.2214/AJR.17.17792 |
| [9] | Verma, P. et al. Fine-needle aspiration cytology versus core-needle biopsy for breast lesions: A dilemma of superiority between the two. Acta Cytologica 65, 411-416 (2021). doi: 10.1159/000517005 |
| [10] | Mayevsky, A. et al. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system. Journal of Biomedical Optics 16, 067004 (2011). doi: 10.1117/1.3585674 |
| [11] | Tuchin, V. V. Handbook of Optical Biomedical Diagnostics. Volume 2: Methods. 2nd edn. (Bellingham: SPIE Press, 2016). |
| [12] | Lagarto, J. L. et al. Simultaneous fluorescence lifetime and raman fiber-based mapping of tissues. Optics Letters 45, 2247-2250 (2020). doi: 10.1364/OL.389300 |
| [13] | Balasundaram, G. et al. Biophotonic technologies for assessment of breast tumor surgical margins—A review. Journal of Biophotonics 14, e202000280 (2021). doi: 10.1002/jbio.202000280 |
| [14] | Tuchin, V. V. , Popp, J. & Zakharov, V. Multimodal Optical Diagnostics of Cancer. (Cham: Springer, 2020). |
| [15] | Wang, T. D. & Van Dam, J. Optical biopsy: a new frontier in endoscopic detection and diagnosis. Clinical Gastroenterology and Hepatology 2, 744-753 (2004). doi: 10.1016/S1542-3565(04)00345-3 |
| [16] | Zherebtsov, E. et al. Machine learning aided photonic diagnostic system for minimally invasive optically guided surgery in the hepatoduodenal area. Diagnostics 10, 873 (2020). doi: 10.3390/diagnostics10110873 |
| [17] | Lagarto, J. L. et al. Real-time fiber-based fluorescence lifetime imaging with synchronous external illumination: A new path for clinical translation. Journal of Biophotonics 13, e201960119 (2020). doi: 10.1002/jbio.201960119 |
| [18] | Li, X. D. et al. Imaging needle for optical coherence tomography. Optics Letters 25, 1520-1522 (2000). doi: 10.1364/OL.25.001520 |
| [19] | Lorenser, D. , McLaughlin, R. A. & Sampson, D. D. Optical coherence tomography in a needle format. in Optical Coherence Tomography: Technology and Applications 2nd edn (eds Drexler, W. & Fujimoto, J. G. ) (Cham: Springer, 2015), 2413–2472. |
| [20] | Maguluri, G. et al. Core needle biopsy guidance based on tissue morphology assessment with AI-OCT imaging. Diagnostics 13, 2276 (2023). doi: 10.3390/diagnostics13132276 |
| [21] | Yang, X. et al. Label-free multimodal nonlinear opti- cal imaging of needle biopsy cores for intraoperative cancer diagnosis. Journal of Biomedical Optics 27, 056504 (2022). |
| [22] | Ramakonar, H. et al. Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. Science Advances 4, eaav4992 (2018). doi: 10.1126/sciadv.aav4992 |
| [23] | Li, J. W. et al. Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration. Journal of Biomedical Optics 22, 106002 (2017). |
| [24] | Pacia, M. Z. et al. Rapid diagnostics of liver steatosis by Raman spectroscopy: via fiber optic probe: A pilot study. Analyst 143, 4723-4731 (2018). doi: 10.1039/C8AN00289D |
| [25] | Cui, S. S., Zhang, S. & Yue, S. H. Raman spectroscopy and imaging for cancer diagnosis. Journal of Healthcare Engineering 2018, 8619342 (2018). |
| [26] | Dremin, V. V. et al. Laser Doppler flowmetry in blood and lymph monitoring, technical aspects and analysis. Proceedings of SPIE 10063, Dynamics and Fluctuations in Biomedical Photonics XIV. San Francisco, CA, USA: SPIE, 2017. |
| [27] | Haj-Hosseini, N. et al. 5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy. Biomedical Optics Express 9, 2284–2296 (2018). |
| [28] | Beauvoit, B. et al. Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors. Analytical Biochemistry 226, 167-174 (1995). doi: 10.1006/abio.1995.1205 |
| [29] | Richards-Kortum, R. & Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annual Review of Physical Chemistry 47, 555-606 (1996). doi: 10.1146/annurev.physchem.47.1.555 |
| [30] | Charvet, I. et al. A new optical method for the non-invasive detection of minimal tissue alterations. Physics in Medicine and Biology 47, 2095-2108 (2002). doi: 10.1088/0031-9155/47/12/307 |
| [31] | Lu, G. L. & Fei, B. W. Medical hyperspectral imaging: a review. Journal of Biomedical Optics 19, 010901 (2014). doi: 10.1117/1.JBO.19.1.010901 |
| [32] | Kim, J. A., Wales, D. J. & Yang, G. Z. Optical spectroscopy for in vivo medical diagnosis — A review of the state of the art and future perspectives. Progress in Biomedical Engineering 2, 042001 (2020). doi: 10.1088/2516-1091/abaaa3 |
| [33] | Potapova, E. V. et al. Evaluation of microcirculatory disturbances in patients with rheumatic diseases by the method of diffuse reflectance spectroscopy. Human Physiology 43, 222-228 (2017). doi: 10.1134/S036211971702013X |
| [34] | Sánchez-Ramos, L. L., Morales-Cruzado, B. & Pérez-Gutiérrez, F. G. Determination of tissue oxygen saturation by diffuse reflectance spectroscopy. Journal of Biomedical Optics 28, 095002 (2023). |
| [35] | Stratonnikov, A. A. & Loschenov, V. B. Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra. Journal of Biomedical Optics 6, 457-467 (2001). doi: 10.1117/1.1411979 |
| [36] | Akter, S. et al. Medical applications of reflectance spectroscopy in the diffusive and sub-diffusive regimes. Journal of Near Infrared Spectroscopy 26, 337-350 (2018). doi: 10.1177/0967033518806637 |
| [37] | Evers, D. J. et al. Optical spectroscopy: Current advances and future applications in cancer diagnostics and therapy. Future Oncology 8, 307-320 (2012). doi: 10.2217/fon.12.15 |
| [38] | Wang, H. -W. et al. Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors. Optics Express 17, 2805–2817 (2009). |
| [39] | Zlobina, N. V. et al. In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study. Lasers in Surgery and Medicine 56, 496–507 (2024). |
| [40] | Spliethoff, J. W. et al. Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: A clinical feasibility study. Clinical Cancer Research 22, 357-365 (2016). doi: 10.1158/1078-0432.CCR-15-0807 |
| [41] | De Boer, L. L. et al. Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery. Journal of Translational Medicine 16, 367 (2018). doi: 10.1186/s12967-018-1747-5 |
| [42] | Brown, J. Q. et al. Quantitative optical spectroscopy: A robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Research 69, 2919-2926 (2009). doi: 10.1158/0008-5472.CAN-08-3370 |
| [43] | Bottiroli, G. & Croce, A. C. Autofluorescence spectroscopy of cells and tissues as a tool for biomedical diagnosis. Photochemical and Photobiological Sciences 3, 189-210 (2004). doi: 10.1039/b310627f |
| [44] | Croce, A. C. & Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry 58, 320-337 (2014). |
| [45] | Koenig, K. & Schneckenburger, H. Laser-induced autofluorescence for medical diagnosis. Journal of Fluorescence 4, 17-40 (1994). doi: 10.1007/BF01876650 |
| [46] | Shrirao, A. B. et al. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnology and Bioengineering 118, 4550-4576 (2021). doi: 10.1002/bit.27933 |
| [47] | Dramićanin, T. & Dramićanin, M. Using fluorescence spectroscopy to diagnose breast cancer. In Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences (ed Stauffer, M. T. ) (Rijeka: InTechOpen, 2016), 261–280. |
| [48] | Liu, W. et al. Laser-induced fluorescence: Progress and prospective for in vivo cancer diagnosis. Chinese Science Bulletin 58, 2003-2016 (2013). doi: 10.1007/s11434-013-5826-y |
| [49] | Majumder, S. K. et al. Nonlinear pattern recognition for laser-induced fluorescence diagnosis of cancer. Lasers in Surgery and Medicine 33, 48-56 (2003). doi: 10.1002/lsm.10191 |
| [50] | Potapova, E. et al. Multimodal optical diagnostic in minimally invasive surgery. In Multimodal optical diagnostics of cancer (eds Tuchin, V. V. , Popp, J. & Zakharov, V. ) (Cham: Springer, 2020), 397–424. |
| [51] | Ramanujam, N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2, 89-117 (2000). doi: 10.1038/sj.neo.7900077 |
| [52] | Shahzad, A. et al. Diagnostic application of fluorescence spectroscopy in oncology field: Hopes and challenges. Applied Spectroscopy Reviews 45, 92-99 (2010). doi: 10.1080/05704920903435599 |
| [53] | Wagniéres, G. A. , Star, W. M. & Wilson, B. C. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochemistry and Photobiology 68, 603–632 (1998). |
| [54] | Chance, B. Spectrophotometry of intracellular respiratory pigments. Science 120, 767-775 (1954). doi: 10.1126/science.120.3124.767 |
| [55] | Chance, B. & Thorell, B. Localization and assay of respiratory enzymes in single living cells: fluorescence measurements of mitochondrial pyridine nucleotide in aerobiosis and anaerobiosis. Nature 184, 931-934 (1959). doi: 10.1038/184931a0 |
| [56] | Duysens, L. N. M. & Amesz, J. Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochimica et Biophysica Acta 24, 19-26 (1957). doi: 10.1016/0006-3002(57)90141-5 |
| [57] | Mayevsky, A. et al. Tissue spectroscope: A novel in vivo approach to real time monitoring of tissue vitality. Journal of Biomedical Optics 9, 1028-1045 (2004). doi: 10.1117/1.1780543 |
| [58] | Shi, H. et al. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia. Journal of Biomedical Optics 19, 017005 (2014). doi: 10.1117/1.JBO.19.1.017005 |
| [59] | Lakowicz, J. R. et al. Fluorescence lifetime imaging of free and protein-bound NADH. Proceedings of the National Academy of Sciences of the United States of America 89, 1271-1275 (1992). |
| [60] | Suhling, K., French, P. M. W. & Phillips, D. Time- resolved fluorescence microscopy. Photochemical & Photobiological Sciences 4, 13-22 (2005). |
| [61] | Niesner, R. et al. Selective detection of NADPH oxidase in polymorphonuclear cells by means of NAD(P)H-based fluorescence lifetime imaging. Journal of Biophysics 2008, 602639 (2008). |
| [62] | Schaefer, P. M. et al. NADH autofluorescence - a marker on its way to boost bioenergetic research. Cytometry Part A 95, 34-46 (2019). doi: 10.1002/cyto.a.23597 |
| [63] | Yu, Q. R. & Heikal, A. A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. Journal of Photochemistry and Photobiology B: Biology 95, 46-57 (2009). doi: 10.1016/j.jphotobiol.2008.12.010 |
| [64] | Lukina, M. et al. Interrogation of metabolic and oxygen states of tumors with fiber-based luminescence lifetime spectroscopy. Optics Letters 42, 731-734 (2017). doi: 10.1364/OL.42.000731 |
| [65] | Ito, S., Hashimoto, M. & Taguchi, Y. Development of a robust autofluorescence lifetime sensing method for use in an endoscopic application. Sensors 20, 1847 (2020). doi: 10.3390/s20071847 |
| [66] | Mayinger, B. et al. Light-induced autofluorescence spectroscopy for tissue diagnosis of GI lesions. Gastrointestinal Endoscopy 52, 395-400 (2000). doi: 10.1067/mge.2000.107219 |
| [67] | Nie, Z. J. et al. Optical biopsy of the upper GI tract using fluorescence lifetime and spectra. Frontiers in Physiology 11, 339 (2020). doi: 10.3389/fphys.2020.00339 |
| [68] | Pfefer, T. J. et al. Temporally and spectrally resolved fluorescence spectroscopy for the detection of high grade dysplasia in Barrett’s esophagus. Lasers in Surgery and Medicine 32, 10-16 (2003). doi: 10.1002/lsm.10136 |
| [69] | Tajiri, H. Autofluorescence endoscopy for the gastrointestinal tract. Proceedings of the Japan Academy, Series B: Physical and Biological Sciences 83, 248-255 (2007). doi: 10.2183/pjab.83.248 |
| [70] | Zhu, C. F. et al. Fluorescence spectroscopy: An adjunct diagnostic tool to image-guided core needle biopsy of the breast. IEEE Transactions on Biomedical Engineering 56, 2518-2528 (2009). doi: 10.1109/TBME.2009.2015936 |
| [71] | Alchab, L. et al. Towards an optical biopsy for the diagnosis of breast cancer in vivo by endogenous fluorescence spectroscopy. Journal of Biophotonics 3, 373-384 (2010). doi: 10.1002/jbio.200900070 |
| [72] | Gust, L. et al. Pulmonary endogenous fluorescence allows the distinction of primary lung cancer from the perilesional lung parenchyma. PLoS ONE 10, e0134559 (2015). doi: 10.1371/journal.pone.0134559 |
| [73] | Dunaev, A. Multiparameter optical methods and instruments for the diagnostics of human body microcirculatory-tissue systems. Proceedings of SPIE 11845, Saratov Fall Meeting 2020: Optical and Nanotechnologies for Biology and Medicine. Saratov, Russian Federation: SPIE, 2021. |
| [74] | Tanis, E. et al. In vivo tumor identification of colorectal liver metastases with diffuse reflectance and fluorescence spectroscopy. Lasers in Surgery and Medicine 48, 820–827 (2016). |
| [75] | Lloyd, W. R. et al. In vivo optical spectroscopy for improved detection of pancreatic adenocarcinoma: a feasibility study. Biomedical Optics Express 5, 9–15 (2014). |
| [76] | Dremin, V. et al. Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study. Scientific Reports 10, 14200 (2020). doi: 10.1038/s41598-020-71089-5 |
| [77] | Zherebtsov, E. A. et al. Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma. Biomedical Optics Express 13, 633-646 (2022). doi: 10.1364/BOE.447687 |
| [78] | Aliverti, A. , Curti, B. & Vanoni, M. A. Identifying and quantitating FAD and FMN in simple and in iron-sulfur-containing flavoproteins. in Flavoprotein Protocols (eds Chapman, S. K. & Reid, G. A. ) (Totowa: Humana, 1999), 9–23. |
| [79] | Xu, H. N. et al. Quantitative redox scanning of tissue samples using a calibration procedure. Journal of Innovative Optical Health Sciences 2, 375-385 (2009). doi: 10.1142/S1793545809000681 |
| [80] | Bachmann, L. et al. Fluorescence spectroscopy of biological tissues - A review. Applied Spectroscopy Reviews 41, 575-590 (2006). doi: 10.1080/05704920600929498 |
| [81] | Croce, A. C. et al. Autofluorescence of liver tissue and bile: Organ functionality monitoring during ischemia and reoxygenation. Lasers in Surgery and Medicine 46, 412-421 (2014). doi: 10.1002/lsm.22241 |
| [82] | Croce, A. C. et al. Autofluorescence-based optical biopsy: An effective diagnostic tool in hepatology. Liver International 38, 1160-1174 (2018). doi: 10.1111/liv.13753 |
| [83] | Khalid, A. et al. Dual-mode OCT/fluorescence system for monitoring the morphology and metabolism of laser-printed 3D full-thickness skin equivalents. Biomedical Optics Express 15, 6299-6312 (2024). doi: 10.1364/BOE.510610 |
| [84] | Mayevsky, A. & Chance, B. Oxidation-reduction states of NADH in vivo: From animals to clinical use. Mitochondrion 7, 330-339 (2007). doi: 10.1016/j.mito.2007.05.001 |
| [85] | Croce, A. C. et al. Bilirubin: An autofluorescence bile biomarker for liver functionality monitoring. Journal of Biophotonics 7, 810-817 (2014). doi: 10.1002/jbio.201300039 |
| [86] | Hsieh, Y. Z. & Morris, M. D. Resonance raman spectroscopic study of bilirubin hydrogen bonding in solutions and in the albumin complex. Journal of the American Chemical Society 110, 62-67 (1988). doi: 10.1021/ja00209a009 |
| [87] | Ma, N. et al. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Biomedical Optics Express 7, 2441-2452 (2016). doi: 10.1364/BOE.7.002441 |
| [88] | Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chemical Biology 5, 593-599 (2009). doi: 10.1038/nchembio.186 |
| [89] | Hühner, J. et al. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection. Electrophoresis 36, 518-525 (2015). doi: 10.1002/elps.201400451 |
| [90] | Guerra Ruiz, A. R. et al. Measurement and clinical usefulness of bilirubin in liver disease. Advances in Laboratory Medicine 2, 352-361 (2021). |
| [91] | Bojarski, C. & Domsta, J. Theory of the influence of concentration on the luminescence of solid solutions. Acta Physica Academiae Scientiarum Hungaricae 30, 145-166 (1971). doi: 10.1007/BF03157854 |
| [92] | Koenig, K. & Riemann, I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. Journal of Biomedical Optics 8, 432-439 (2003). doi: 10.1117/1.1577349 |
| [93] | Turchin, I. et al. Multimodal optical monitoring of auto- and allografts of skin on a burn wound. Biomedicines 11, 351 (2023). doi: 10.3390/biomedicines11020351 |
| [94] | Cochran, J. M. et al. Tissue oxygen saturation predicts response to breast cancer neoadjuvant chemotherapy within 10 days of treatment. Journal of Biomedical Optics 24, 21202 (2018). |
| [95] | Ueda, S. et al. Baseline tumor oxygen saturation correlates with a pathologic complete response in breast cancer patients undergoing neoadjuvant chemotherapy. Cancer Research 72, 4318-4328 (2012). doi: 10.1158/0008-5472.CAN-12-0056 |
| [96] | Nachabé, R. et al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods. Journal of Biomedical Optics 16, 087010 (2011). doi: 10.1117/1.3611010 |
| [97] | Dramićanin, T. et al. Biophysical characterization of human breast tissues by photoluminescence excitation-emission spectroscopy. Journal of Research in Physics 36, 53-62 (2012). doi: 10.2478/v10242-012-0013-z |
| [98] | Georgakoudi, I. et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Research 62, 682-687 (2002). |
| [99] | Dremin, V. et al. Protocol for optical percutaneous needle biopsy of the liver. Protocol Exchange (2020). http://dx.doi.org/10.21203/rs.3.pex-1126/v1. |
| [100] | Dremin, V. et al. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Transactions on Medical Imaging 40, 1207-1216 (2021). doi: 10.1109/TMI.2021.3049591 |
| [101] | Zherebtsov, E. et al. Hyperspectral imaging of human skin aided by artificial neural networks. Biomedical Optics Express 10, 3545-3559 (2019). doi: 10.1364/BOE.10.003545 |
| [102] | Potapova, E. V. et al. Detection of NADH and NADPH levels in vivo identifies shift of glucose metabolism in cancer to energy production. The FEBS Journal 291, 2674-2682 (2024). doi: 10.1111/febs.17067 |
| [103] | Skala, M. C. et al. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. Journal of Biomedical Optics 12, 024014 (2007). |
| [104] | Potapova, E. V. et al. In vivo time-resolved fluorescence detection of liver cancer supported by machine learning. Lasers in Surgery and Medicine 56, 836–844 (2024). |
| [105] | Singh, S. et al. Radiological diagnosis of chronic liver disease and hepatocellular carcinoma: A review. Journal of Medical Systems 47, 73 (2023). doi: 10.1007/s10916-023-01968-7 |