[1] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). doi: 10.1126/science.1102896
[2] Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451-10453 (2005). doi: 10.1073/pnas.0502848102
[3] Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898-2926 (2013). doi: 10.1021/nn400280c
[4] Xu, M. S. et al. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766-3798 (2013). doi: 10.1021/cr300263a
[5] Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005). doi: 10.1038/nature04233
[6] Lui, C. H. et al. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010). doi: 10.1103/PhysRevLett.105.127404
[7] Malard, L. M. et al. Raman spectroscopy in graphene. Phys. Rep. 473, 51-87 (2009). doi: 10.1016/j.physrep.2009.02.003
[8] Mannix, A. J. et al. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017). doi: 10.1038/s41570-016-0014
[9] Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147-150 (2011). doi: 10.1038/nnano.2010.279
[10] Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193-335 (1969). doi: 10.1080/00018736900101307
[11] Lu, A. Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744-749 (2017). doi: 10.1038/nnano.2017.100
[12] Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805
[13] Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271-1275 (2010). doi: 10.1021/nl903868w
[14] Roldán, R. et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann. Phys. 526, 347-357 (2014). doi: 10.1002/andp.201400128
[15] Mak, K. F. et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494-498 (2012). doi: 10.1038/nnano.2012.96
[16] Zeng, H. L. et al. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490-493 (2012). doi: 10.1038/nnano.2012.95
[17] Chen, P. G. et al. Chiral coupling of valley excitons and light through photonic spin-orbit interactions. Adv. Opt. Mater. 8, 1901233 (2020). doi: 10.1002/adom.201901233
[18] Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934-9938 (2011). doi: 10.1021/nn203715c
[19] Yin, Z. Y. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74-80 (2012). doi: 10.1021/nn2024557
[20] Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-660 (2015). doi: 10.1038/nature14417
[21] Gong, S. H. et al. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 359, 443-447 (2018). doi: 10.1126/science.aan8010
[22] Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013). doi: 10.1038/nature12385
[23] Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722-726 (2010). doi: 10.1038/nnano.2010.172
[24] Zhang, C. H. et al. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat. Commun. 6, 6519 (2015). doi: 10.1038/ncomms7519
[25] Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311-1314 (2013). doi: 10.1126/science.1235547
[26] Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368-374 (2020). doi: 10.1038/s41586-020-2098-y
[27] Wang, L. et al. 2D-material-integrated whispering-gallery-mode microcavity. Photonics Res. 7, 905-916 (2019). doi: 10.1364/PRJ.7.000905
[28] Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626-3630 (2013). doi: 10.1021/nl4014748
[29] He, K. L. et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931-2936 (2013). doi: 10.1021/nl4013166
[30] Yoon, D., Son, Y. W. & Cheong, H. Strain-dependent splitting of the double-resonance Raman scattering band in graphene. Phys. Rev. Lett. 106, 155502 (2011). doi: 10.1103/PhysRevLett.106.155502
[31] Frank, O. et al. Raman 2D-band splitting in graphene: theory and experiment. ACS Nano 5, 2231-2239 (2011). doi: 10.1021/nn103493g
[32] Shi, H. L. et al. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys.Rev. B 87, 155304 (2013). doi: 10.1103/PhysRevB.87.155304
[33] Castellanos-Gomez, A. et al. Mechanics of freely-suspended ultrathin layered materials. Ann. Phys. 527, 27-44 (2015). doi: 10.1002/andp.201400153
[34] Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703-9709 (2011). doi: 10.1021/nn203879f
[35] Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772-775 (2012). doi: 10.1002/adma.201103965
[36] Bao, S. Y. et al. Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat. Commun. 8, 1845 (2017). doi: 10.1038/s41467-017-02026-w
[37] Griffith, A. A. V. I. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163-198 (1921). doi: 10.1098/rsta.1921.0006
[38] Cooper, R. C. et al. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 87, 035423 (2013). doi: 10.1103/PhysRevB.87.035423
[39] Roldán, R. et al. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015). doi: 10.1088/0953-8984/27/31/313201
[40] Castellanos-Gomez, A., van der Zant, H. S. J. & Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 7, 572-578 (2014). doi: 10.1007/s12274-014-0425-z
[41] Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361-5366 (2013). doi: 10.1021/nl402875m
[42] Lee, C. et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008). doi: 10.1126/science.1157996
[43] Scalise, E. et al. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43-48 (2012). doi: 10.1007/s12274-011-0183-0
[44] Feng, J. et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866-872 (2012). doi: 10.1038/nphoton.2012.285
[45] Ghorbani-Asl, M. et al. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013). doi: 10.1103/PhysRevB.87.235434
[46] Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30-33 (2010). doi: 10.1038/nphys1420
[47] Pellegrino, F. M. D., Angilella, G. G. N. & Pucci, R. Strain effect on the optical conductivity of graphene. Phys. Rev. B 81, 035411 (2010). doi: 10.1103/PhysRevB.81.035411
[48] Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699-712 (2012). doi: 10.1038/nnano.2012.193
[49] Zhu, Y. W. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906-3924 (2010). doi: 10.1002/adma.201001068
[50] Xia, F. N. et al. Two-dimensional material nanophotonics. Nat. Photonics 8, 899-907 (2014). doi: 10.1038/nphoton.2014.271
[51] Xu, X. D. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343-350 (2014). doi: 10.1038/nphys2942
[52] Chuang, S. L. Physics of Photonic Devices (Wile, New York, 2009).
[53] Naumis, G. G. et al. Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 096501 (2017). doi: 10.1088/1361-6633/aa74ef
[54] Amorim, B. et al. Novel effects of strains in graphene and other two dimensional materials. Phys. Rep. 617, 1-54 (2016). doi: 10.1016/j.physrep.2015.12.006
[55] Midtvedt, D., Lewenkopf, C. H. & Croy, A. Strain-displacement relations for strain engineering in single-layer 2d materials. 2D Mater. 3, 011005 (2016). doi: 10.1088/2053-1583/3/1/011005
[56] Atalaya, J., Isacsson, A. & Kinaret, J. M. Continuum elastic modeling of graphene resonators. Nano Lett. 8, 4196-4200 (2008). doi: 10.1021/nl801733d
[57] Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009). doi: 10.1103/PhysRevB.80.045401
[58] Cocco, G., Cadelano, E. & Colombo, L. Gap opening in graphene by shear strain. Phys. Rev. B 81, 241412 (2010). doi: 10.1103/PhysRevB.81.241412
[59] Fang, S. et al. Electronic structure theory of strained two-dimensional materials with hexagonal symmetry. Phys. Rev. B 98, 075106 (2018). doi: 10.1103/PhysRevB.98.075106
[60] Mañes, J. L. et al. Generalized effective Hamiltonian for graphene under nonuniform strain. Phys. Rev. B 88, 155405 (2013). doi: 10.1103/PhysRevB.88.155405
[61] Feldmann, J. et al. Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 59, 2337-2340 (1987). doi: 10.1103/PhysRevLett.59.2337
[62] Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018). doi: 10.1103/RevModPhys.90.021001
[63] Knox, R. S. Theory of Excitons (Academic, New York, 1963).
[64] Liang, W. Y. Excitons. Phys. Educ. 5, 226-228 (1970).
[65] Combescot, M. & Shiau, S. Y. Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics (Oxford University Press, Oxford, 2015).
[66] Zhang, C. D. et al. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443-2447 (2014). doi: 10.1021/nl501133c
[67] Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors 5th edn (World Scientific Publishing Company, Singapore, 2009).
[68] Yan, C. Y. et al. 2D Group IVB transition metal dichalcogenides. Adv. Funct. Mater. 28, 1803305 (2018). doi: 10.1002/adfm.201803305
[69] Chakraborty, B. et al. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44, 92-96 (2013). doi: 10.1002/jrs.4147
[70] Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385-1390 (2012). doi: 10.1002/adfm.201102111
[71] Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012). doi: 10.1103/PhysRevB.85.161403
[72] Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695-2700 (2010). doi: 10.1021/nn1003937
[73] Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216-226 (2016). doi: 10.1038/nphoton.2015.282
[74] Schmidt, R. et al. Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 3, 021011 (2016). doi: 10.1088/2053-1583/3/2/021011
[75] Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301 (2013). doi: 10.1103/PhysRevB.88.121301
[76] Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126-7131 (2013). doi: 10.1021/nn4024834
[77] Wang, Y. L. et al. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8, 2562-2572 (2015). doi: 10.1007/s12274-015-0762-6
[78] Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592-4597 (2014). doi: 10.1021/nl501638a
[79] Plechinger, G. et al. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2, 015006 (2015). doi: 10.1088/2053-1583/2/1/015006
[80] Tripathi, L. N. et al. Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5, 1919-1926 (2018). doi: 10.1021/acsphotonics.7b01053
[81] Mennel, L. et al. Optical imaging of strain in two-dimensional crystals. Nat. Commun. 9, 516 (2018). doi: 10.1038/s41467-018-02830-y
[82] Zhao, M. et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 5, e16131 (2016). doi: 10.1038/lsa.2016.131
[83] Jeong, J. W. et al. Strain-induced three-photon effects. Phys. Rev. B 62, 13455-13463 (2000). doi: 10.1103/PhysRevB.62.13455
[84] Huang, H. H. et al. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247-1268 (2020). doi: 10.1039/C9NR08313H
[85] Duerloo, K. A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). doi: 10.1038/ncomms5214
[86] Song, S. et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188-193 (2016). doi: 10.1021/acs.nanolett.5b03481
[87] Gmitra, M. et al. Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009). doi: 10.1103/PhysRevB.80.235431
[88] Pacheco Sanjuan, A. A. et al. Graphene's morphology and electronic properties from discrete differential geometry. Phys. Rev. B 89, 121403 (2014). doi: 10.1103/PhysRevB.89.121403
[89] Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi: 10.1126/science.1156965
[90] Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337-1354 (2008). doi: 10.1103/RevModPhys.80.1337
[91] Li, Y. L. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422
[92] Zhu, L. X. et al. Angle-selective perfect absorption with two-dimensional materials. Light Sci. Appl. 5, e16052 (2016). doi: 10.1038/lsa.2016.52
[93] Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 13, 270-276 (2019). doi: 10.1038/s41566-019-0389-3
[94] Cai, H. et al. Enhanced linear absorption coefficient of in-plane monolayer graphene on a silicon microring resonator. Opt. Express 24, 24105-24116 (2016). doi: 10.1364/OE.24.024105
[95] Thomsen, C. & Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214-5217 (2000). doi: 10.1103/PhysRevLett.85.5214
[96] Graf, D. et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238-242 (2007). doi: 10.1021/nl061702a
[97] Ding, F. et al. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett. 10, 3453-3458 (2010). doi: 10.1021/nl101533x
[98] Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183-191 (2007). doi: 10.1038/nmat1849
[99] Ando, T., Zheng, Y. S. & Suzuura, H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn 71, 1318-1324 (2002). doi: 10.1143/JPSJ.71.1318
[100] Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 96, 256802 (2006). doi: 10.1103/PhysRevLett.96.256802
[101] Naumov, I. I. & Bratkovsky, A. M. Gap opening in graphene by simple periodic inhomogeneous strain. Phys. Rev. B 84, 245444 (2011). doi: 10.1103/PhysRevB.84.245444
[102] Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544-547 (2010). doi: 10.1126/science.1191700
[103] Cazalilla, M. A., Ochoa, H. & Guinea, F. Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides. Phys. Rev. Lett. 113, 077201 (2014). doi: 10.1103/PhysRevLett.113.077201
[104] Jie, W. J. et al. Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition. Appl. Phys. Lett. 102, 223112 (2013). doi: 10.1063/1.4809922
[105] Zabel, J. et al. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 12, 617-621 (2012). doi: 10.1021/nl203359n
[106] Fandan, R. et al. Dynamic local strain in graphene generated by surface acoustic waves. Nano Lett. 20, 402-409 (2020). doi: 10.1021/acs.nanolett.9b04085
[107] Dong, X. C. et al. Symmetry breaking of graphene monolayers by molecular decoration. Phys. Rev. Lett. 102, 135501 (2009). doi: 10.1103/PhysRevLett.102.135501
[108] Qiu, C. Y. et al. Raman spectroscopy of morphology-controlled deposition of Au on graphene. Carbon 59, 487-494 (2013). doi: 10.1016/j.carbon.2013.03.043
[109] Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009). doi: 10.1103/PhysRevB.79.205433
[110] Huang, M. Y. et al. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074-4079 (2010). doi: 10.1021/nl102123c
[111] Frank, O. et al. Compression behavior of single-layer graphenes. ACS Nano 4, 3131-3138 (2010). doi: 10.1021/nn100454w
[112] Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301-2305 (2008). doi: 10.1021/nn800459e
[113] Zhao, Y. D. et al. Effects of surface roughness of Ag thin films on surface-enhanced Raman spectroscopy of graphene: spatial nonlocality and physisorption strain. Nanoscale 6, 1311-1317 (2014). doi: 10.1039/C3NR05303B
[114] Ni, G. X. et al. Tuning optical conductivity of large-scale CVD graphene by strain engineering. Adv. Mater. 26, 1081-1086 (2014). doi: 10.1002/adma.201304156
[115] Island, J. O. et al. Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8, 2589-2593 (2016). doi: 10.1039/C5NR08219F
[116] Timoshenko, S. P. & Gere, J. M. Theory of Elastic Stability (McGraw-Hill, New York, 1961).
[117] Shen, T. T., Penumatcha, A. V. & Appenzeller, J. Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10, 4712-4718 (2016). doi: 10.1021/acsnano.6b01149
[118] Wang, L. et al. On-chip rolling design for controllable strain engineering and enhanced photon-phonon interaction in graphene. Small 15, e1805477 (2019). doi: 10.1002/smll.201805477
[119] Pérez Garza, H. H. et al. Controlled, reversible, and nondestructive generation of uniaxial extreme strains (> 10%) in graphene. Nano Lett. 14, 4107-4113 (2014). doi: 10.1021/nl5016848
[120] Frank, O. et al. Phonon and structural changes in deformed Bernal stacked bilayer graphene. Nano Lett. 12, 687-693 (2012). doi: 10.1021/nl203565p
[121] Ahn, G. H. et al. Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 608 (2017). doi: 10.1038/s41467-017-00516-5
[122] Dhakal, K. P. et al. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124-5133 (2017). doi: 10.1021/acs.chemmater.7b00453
[123] Yang, S. X. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660-1666 (2015). doi: 10.1021/nl504276u
[124] Kang, P. et al. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light Sci. Appl. 7, 17 (2018). doi: 10.1038/s41377-018-0002-4
[125] Vella, D. et al. The macroscopic delamination of thin films from elastic substrates. Proc. Natl Acad. Sci. USA 106, 10901-10906 (2009). doi: 10.1073/pnas.0902160106
[126] Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017). doi: 10.1038/ncomms15093
[127] Branny, A. et al. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017). doi: 10.1038/ncomms15053
[128] Cai, T. et al. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466-3471 (2018). doi: 10.1021/acsphotonics.8b00580
[129] Tomori, H. et al. Introducing nonuniform strain to graphene using dielectric nanopillars. Appl. Phys. Express 4, 075102 (2011). doi: 10.1143/APEX.4.075102
[130] Kern, J. et al. Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101-7105 (2016). doi: 10.1002/adma.201600560
[131] Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567-7573 (2015). doi: 10.1021/acs.nanolett.5b03312
[132] Kim, J. H. et al. Mechanical properties of two-dimensional materials and their applications. J. Phys. D Appl. Phys. 52, 083001 (2018). doi: 10.1088/1361-6463/aaf465
[133] Wang, D. et al. Flexible and optical fiber sensors composited by graphene and PDMS for motion detection. Polymers 11, 1433 (2019). doi: 10.3390/polym11091433
[134] Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). doi: 10.1038/ncomms8381
[135] O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687-695 (2009). doi: 10.1038/nphoton.2009.229
[136] Chakraborty, C. et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507-511 (2015). doi: 10.1038/nnano.2015.79
[137] He, Y. M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497-502 (2015). doi: 10.1038/nnano.2015.75
[138] Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491-496 (2015). doi: 10.1038/nnano.2015.60
[139] Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137-1142 (2018). doi: 10.1038/s41565-018-0275-z
[140] Park, K. D. et al. Hybrid tip-enhanced nanospectroscopy and nanoimaging of monolayer WSe2 with local strain control. Nano Lett. 16, 2621-2627 (2016). doi: 10.1021/acs.nanolett.6b00238
[141] Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490-493 (2007). doi: 10.1126/science.1136836
[142] Martinez, J. C., Jalil, M. B. A. & Tan, S. G. Giant Faraday and Kerr rotation with strained graphene. Opt. Lett. 37, 3237-3239 (2012). doi: 10.1364/OL.37.003237
[143] Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48-53 (2016). doi: 10.1038/nmat4465
[144] Lu, P. et al. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13035-13040 (2012). doi: 10.1039/c2cp42181j
[145] Quereda, J. et al. Strain engineering of Schottky barriers in single- and few-layer MoS2 vertical devices. 2D Mater. 4, 021006 (2017). doi: 10.1088/2053-1583/aa5920
[146] An, C. H. et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 13, 3310-3319 (2019). doi: 10.1021/acsnano.8b09161
[147] Zhao, X. X. et al. Strain modulation by van der Waals coupling in bilayer transition metal dichalcogenide. ACS Nano 12, 1940-1948 (2018). doi: 10.1021/acsnano.7b09029
[148] Chen, J. H. et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci. Appl. 8, 8 (2019). doi: 10.1038/s41377-018-0115-9
[149] He, Y. M. et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Letters 16, 3314-3320 (2016). doi: 10.1021/acs.nanolett.6b00932
[150] X.ie, S. E. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131-1136 (2018). doi: 10.1126/science.aao5360
[151] Motlag, M. et al. Asymmetric 3D elastic-plastic strain-modulated electron energy structure in monolayer graphene by laser shocking. Adv. Mater. 31, 1900597 (2019). doi: 10.1002/adma.201900597