[1] Yost, W. A. Fundamentals of Hearing: An Introduction. 5th edn. (New York: Academic Press, 2006).
[2] Fastl, H. & Zwicker, E. Information processing in the auditory system. in Psychoacoustics (eds Fastl, H. & Zwicker, E.) (Berlin, Heidelberg: Springer, 2007). https://doi.org/10.1007/978-3-540-68888-4_3.
[3] Volandri, G. et al. Biomechanics of the tympanic membrane. Journal of Biomechanics 44, 1219-1236 (2011). doi: 10.1016/j.jbiomech.2010.12.023(2011)
[4] Rosowski, J. J. Outer and middle ears. in Comparative Hearing: Mammals (eds Fay, R. R. & Popper, A. N.) (New York: Springer, 1994), 172-247. https://doi.org/10.1007/978-1-4612-2700-7_6.
[5] Geisler, C. D. From Sound to Synapse: Physiology of the Mammalian Ear. (New York: Oxford University Press, 1998).
[6] Lim, D. J. Structure and function of the tympanic membrane: a review. Acta Oto-Rhino-Laryngologica Belgica 49, 101-115 (1995).
[7] De Greef, D. et al. Details of human middle ear morphology based on micro-CT imaging of phosphotungstic acid stained samples. Journal of Morphology 276, 1025-1046 (2015). doi: 10.1002/jmor.20392
[8] van der Jeught, S. et al. Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography. Journal of the Association for Research in Otolaryngology 14, 483-494 (2013). doi: 10.1007/s10162-013-0394-z(2013)
[9] Aernouts, J., Aerts, J. R. M. & Dirckx, J. J. J. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ, point indentation measurements. Hearing Research 290, 45-54 (2012). doi: 10.1016/j.heares.2012.05.001(2012)
[10] Rosowski, J. J. et al. Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz. Hearing Research 253, 83-96 (2009). doi: 10.1016/j.heares.2009.03.010
[11] Rosowski, J. J. Models of external- and middle-ear function. in Auditory Computation (eds Hawkins H.L. et al.) (New York: Springer, 1996), 15-61.
[12] Lim, D. J. Human tympanic membrane: an ultrastructural observation. Acta Oto-Laryngologica 70, 176-186 (1970). doi: 10.3109/00016487009181875
[13] Wang, X. L. et al. Motion of tympanic membrane in guinea pig otitis media model measured by scanning laser Doppler vibrometry. Hearing Research 339, 184-194 (2016). doi: 10.1016/j.heares.2016.07.015(2016)
[14] Fay, J. P., Puria, S. & Steele, C. R. The discordant eardrum. Proceedings of the National Academy of Sciences of the United States of America 103, 19743-19748 (2006). doi: 10.1073/pnas.0603898104(2006)
[15] Aernouts, J. et al. Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modelling. International Journal of Engineering Science 48.6 (2010).
[16] Cheng, T. et al. Viscoelastic properties of human tympanic membrane. Annals of Biomedical Engineering 35, 305-314 (2007). doi: 10.1007/s10439-006-9227-0(2007)
[17] Fay, J. et al. Three approaches for estimating the elastic modulus of the tympanic membrane. Journal of Biomechanics 38, 1807-1815 (2005). doi: 10.1016/j.jbiomech.2004.08.022
[18] Milazzo, M. et al. The path of a click stimulus from ear canal to umbo. Hearing Research 346, 1-13 (2017). doi: 10.1016/j.heares.2017.01.007(2017)
[19] Kakue, T. et al. High-speed phase imaging by parallel phase-shifting digital holography. Optics Letters 36, 4131-4133 (2011). doi: 10.1364/OL.36.004131
[20] Fuller, P. W. W. An introduction to high speed photography and photonics. The Imaging Science Journal 57, 293-302 (2009). doi: 10.1179/136821909X12490326247524
[21] Goode, R. L. et al. Laser Doppler Vibrometer (LDV)Ƀa new clinical tool for the otologist. The American Journal of Otology 17, 813-822 (1996).
[22] Goode, R. L. et al. New knowledge about the function of the human middle ear: development of an improved analog model. The American Journal of Otology 15, 145-154 (1994). doi: 10.1016/0196-0709(94)90064-7
[23] Gan, R. Z., Wood, M. W. & Dormer, K. J. Human middle ear transfer function measured by double laser interferometry system. Otology & Neurotology 25, 423-435 (2004).
[24] Rosowski, J. J., Nakajima, H. H. & Merchant, S. N. Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear and Hearing 29, 3-19 (2008). doi: 10.1097/AUD.0b013e31815d63a5
[25] Decraemer, W. F., Khanna, S. M. & Funnell, W. R. J. Vibrations at a fine grid of points on the cat tympanic membrane measured with a heterodyne interferometer. Proceedings of EOS/SPIE International Symposia on Industrial Lasers and Inspection, Conference on Biomedical Laser and Metrology and Applications. Munchen: 1999, 1-4.
[26] de La Rochefoucauld, O. & Olson, E. S. A sum of simple and complex motions on the eardrum and manubrium in gerbil. Hearing Research 263, 9-15 (2010). doi: 10.1016/j.heares.2009.10.014
[27] Cheng, J.T. et al. Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hearing Research 263, 66-77 (2010). doi: 10.1016/j.heares.2009.12.024(2010)
[28] Kim, S. et al. Effect of age on binaural speech intelligibility in normal hearing adults. Speech Communication 48, 591-597 (2006). doi: 10.1016/j.specom.2005.09.004
[29] Desoer, C. & Wang, Y.T. On the generalized Nyquist stability criterion. IEEE Transactions on Automatic Control 25, 187-196 (1980). doi: 10.1109/TAC.1980.1102280
[30] Razavi, P. et al. Combined high-speed holographic shape and full-field displacement measurements of tympanic membrane. Journal of Biomedical Optics 24, 031008 (2018).
[31] Psota, P. et al. Multiple angle digital holography for the shape measurement of the unpainted tympanic membrane. Optics Express 28, 24614-24628 (2020). doi: 10.1364/OE.398919(2020)
[32] Dobrev, I. et al. High-speed digital holography for transient response of the human tympanic membrane. in Advancement of Optical Methods in Experimental Mechanics, Volume 3 (eds Jin, H. et al.) (Cham: Springer, 2015). https://doi.org/10.1007/978-3-319-06986-9_39.
[33] Khaleghi, M. et al. In-plane and out-of-plane motions of the human tympanic membrane. The Journal of the Acoustical Society of America 139, 104-117 (2016). doi: 10.1121/1.4935386(2016)
[34] Tang, H. M. et al. High-speed holographic shape and full-field displacement measurements of the tympanic membrane in normal and experimentally simulated pathological ears. Applied Sciences 9, 2809 (2019). doi: 10.3390/app9142809(2019)
[35] Tang, H. et al. Analyses of the tympanic membrane impulse response measured with high-speed holography. Hearing Research 410, 108335 (2021). doi: 10.1016/j.heares.2021.108335(2021)
[36] Tang, H. et al. High speed Holographic Shape and Vibration Measurement of the Semi-transparent Tympanic Membrane. Mechanics of Biological Systems and Materials & Micro-and Nanomechanics & Research Applications, Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59765-8_12(2021).
[37] Jones, R. & Wykes, C. Holographic and Speckle Interferometry. 2nd edn. (Cambridge: Cambridge University Press, 1989).
[38] Kreis, T. Handbook of Holographic Interferometry: Optical and Digital Methods. (Weinheim: Wiley-VCH, 2005).
[39] Dobrev, I. T. Full-field vibrometry by high-speed digital holography for middle-ear mechanics. PhD thesis, Worcester Polytechnic Institute, Worcester, 2014.
[40] Razavi, P. Development of high-speed digital holographic shape and displacement measurement methods for middle-ear mechanics in-vivo. PhD thesis, Worcester Polytechnic Institute, Worcester, 2018.