[1] Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018). doi: 10.1038/s41586-018-0451-1
[2] Heo, J. H. et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 30, 1801743 (2018). doi: 10.1002/adma.201801743
[3] Zhang, Y. H. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13, 2520–2525 (2019). doi: 10.1021/acsnano.8b09484
[4] Wang, L. L. et al. Ultra-stable CsPbBr3 perovskite nanosheets for X-ray imaging screen. Nano-Micro Lett. 11, 52 (2019). doi: 10.1007/s40820-019-0283-z
[5] Cao, F. et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14, 5183–5193 (2020). doi: 10.1021/acsnano.9b06114
[6] Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017). doi: 10.1038/nature24032
[7] Van Eijk, C. W. E. Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, R85–R106 (2002). doi: 10.1088/0031-9155/47/8/201
[8] Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). doi: 10.1038/nature09750
[9] Lecoq, P. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detect. Associated Equip. 809, 130–139 (2016). doi: 10.1016/j.nima.2015.08.041
[10] Rabin, O. et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5, 118–122 (2006). doi: 10.1038/nmat1571
[11] Spahn, M. X-ray detectors in medical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detect. Associated Equip. 731, 57–63 (2013). doi: 10.1016/j.nima.2013.05.174
[12] Rowlands, J. A. Material change for X-ray detectors. Nature 550, 47–48 (2017). doi: 10.1038/550047a
[13] Yaffe, M. J. & Rowlands, J. A. X-ray detectors for digital radiography. Phys. Med. Biol. 42, 1–39 (1997). doi: 10.1088/0031-9155/42/1/001
[14] Greskovich, C. & Duclos, S. Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69–88 (1997). doi: 10.1146/annurev.matsci.27.1.69
[15] Büchele, P. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 9, 843–848 (2015). doi: 10.1038/nphoton.2015.216
[16] Wang, Z. G. et al. Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI (Tl). Phys. Status Solidi B 250, 1532–1540 (2013). doi: 10.1002/pssb.201248587
[17] Nillius, P. et al. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging. Med. Phys. 42, 600–605 (2015). doi: 10.1118/1.4905096
[18] Xu, J. et al. Fabrication, microstructure, and luminescent properties of Ce3+-Doped Lu3Al5O12(Ce:LuAG) transparent ceramics by low-temperature vacuum sintering. J. Am. Ceram. Soc. 96, 1930–1936 (2013). doi: 10.1111/jace.12231
[19] Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9, 444–449 (2015). doi: 10.1038/nphoton.2015.82
[20] Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photonics 11, 436–440 (2017). doi: 10.1038/nphoton.2017.94
[21] Kawano, N. et al. Scintillating organic-inorganic layered perovskite-type compounds and the gamma-ray detection capabilities. Sci. Rep. 7, 14754 (2017). doi: 10.1038/s41598-017-15268-x
[22] Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 11, 315–321 (2017). doi: 10.1038/nphoton.2017.43
[23] Birowosuto, M. D. et al. X-ray scintillation in lead halide perovskite crystals. Sci. Rep. 6, 37254 (2016). doi: 10.1038/srep37254
[24] Wang, X. et al. PIN diodes array made of perovskite single crystal for X-ray imaging. Phys. Status Solidi RRL 12, 1800380 (2018). doi: 10.1002/pssr.201800380
[25] Liu, J. Y. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 31, 1901644 (2019).
[26] Mykhaylyk, V. B., Kraus, H. & Saliba, M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Mater. Horiz. 6, 1740–1747 (2019). doi: 10.1039/C9MH00281B
[27] Jiang., T. M. et al. Power conversion efficiency enhancement of low-bandgap mixed Pb-Sn perovskite solar cells by improved interfacial charge transfer. ACS Energy Lett. 4, 1784–1790 (2019). doi: 10.1021/acsenergylett.9b00880
[28] Gao., Y. et al. Highly stable lead-free perovskite field-effect transistors incorporating linear π-conjugated organic ligands. J. Am. Chem. Soc. 141, 15577–15585 (2019). doi: 10.1021/jacs.9b06276
[29] Jiang., T. M. et al. Realizing high efficiency over 20% of low-bandgap Pb-Sn-alloyed perovskite solar cells by in situ reduction of Sn4+. Sol. RRL 4, 1900467 (2020). doi: 10.1002/solr.201900467
[30] Yang, B. et al. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. J. Am. Chem. Soc. 140, 17001–17006 (2018). doi: 10.1021/jacs.8b07424
[31] Luo, J. J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018). doi: 10.1038/s41586-018-0691-0
[32] Volonakis, G. et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017). doi: 10.1021/acs.jpclett.6b02682
[33] Yang, B. et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 31, 1904711 (2019). doi: 10.1002/adma.201904711
[34] Lin, R. C. et al. All-inorganic CsCu2I3 single crystal with high-PLQY (≈ 15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv. Mater. 31, 1905079 (2019). doi: 10.1002/adma.201905079
[35] Jun, T. et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30, 1804547 (2018). doi: 10.1002/adma.201804547
[36] Xie, J. L. et al. New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability. Nanoscale 11, 6719–6726 (2019). doi: 10.1039/C9NR00600A
[37] McCall, K. M. et al. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron–phonon coupling. Chem. Mater. 31, 2644–2650 (2019). doi: 10.1021/acs.chemmater.9b00636
[38] Ding, N. et al. Europium-doped lead-free Cs3Bi2Br9 perovskite quantum dots and ultrasensitive Cu2+ detection. ACS Sustain. Chem. Eng. 7, 8397–8404 (2019). doi: 10.1021/acssuschemeng.9b00038
[39] Hu, Q. S. et al. X-ray scintillation in lead-free double perovskite crystals. Sci. China Chem. 61, 1581–1586 (2018). doi: 10.1007/s11426-018-9308-2
[40] Slavney, A. H. et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016). doi: 10.1021/jacs.5b13294
[41] Steele, J. A. et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors. Adv. Mater. 30, 1804450 (2018). doi: 10.1002/adma.201804450
[42] Pan, W. C. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 11, 726–732 (2017). doi: 10.1038/s41566-017-0012-4
[43] Meng, W. W. et al. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 8, 2999–3007 (2017). doi: 10.1021/acs.jpclett.7b01042
[44] Han, P. G. et al. Size effect of lead-free halide double perovskite on luminescence property. Sci. China Chem. 62, 1405–1413 (2019). doi: 10.1007/s11426-019-9520-1
[45] Hu, Q. S. et al. Tunable color temperatures and efficient white emission from Cs2Ag1−xNaxIn1−yBiyCl6 double perovskite nanocrystals. Small 15, 1903496 (2019). doi: 10.1002/smll.201903496
[46] Zhou, J. et al. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv. Optical Mater. 7, 1801435 (2019). doi: 10.1002/adom.201801435
[47] Blasse, G. Scintillator materials. Chem. Mater. 6, 1465–1475 (1994). doi: 10.1021/cm00045a002
[48] Grim, J. Q. et al. The roles of thermalized and hot carrier diffusion in determining light yield and proportionality of scintillators. Phys. Status Solidi A 209, 2421–2426 (2012). doi: 10.1002/pssa.201200436
[49] Samei, E., Flynn, M. J. & Reimann, D. A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys. 25, 102–113 (1998). doi: 10.1118/1.598165
[50] Kabir, M. Z. Effect of repeated x-ray exposure on the resolution of amorphous selenium based x-ray imagers. Med. Phys. 37, 1339–1349 (2010). doi: 10.1118/1.3326947
[51] Yasuda, R., Katagiri, M. & Matsubayashi, M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detect. Associated Equip. 680, 139–144 (2012). doi: 10.1016/j.nima.2012.03.035