[1] Yao, J. J., Song, L. & Wang, L. V. Photoacoustic microscopy: superdepth, superresolution, and superb contrast. IEEE Pulse 6, 34–37 (2015). doi: 10.1109/MPUL.2015.2409100
[2] Hai, P. F. et al. Near-infrared optical-resolution photoacoustic microscopy. Opt. Lett. 39, 5192–5195 (2014). doi: 10.1364/OL.39.005192
[3] Yao, J. J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015). doi: 10.1038/nmeth.3336
[4] Wong, T. T. W. et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat. Commun. 8, 1386 (2017). doi: 10.1038/s41467-017-01649-3
[5] Li, G., Maslov, K. I. & Wang, L. V. Reflection-mode multifocal optical-resolution photoacoustic microscopy. J. Biomed. Opt. 18, 030501 (2013).
[6] Xia, J. et al. Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy. Opt. Lett. 38, 5236–5239 (2013). doi: 10.1364/OL.38.005236
[7] Draeger, C. & Fink, M. One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity. Phys. Rev. Lett. 79, 407–410 (1997). doi: 10.1103/PhysRevLett.79.407
[8] Ing, R. K. et al. In solid localization of finger impacts using acoustic time-reversal process. Appl. Phys. Lett. 87, 204104 (2005). doi: 10.1063/1.2130720
[9] Montaldo, G. et al. Building three-dimensional images using a time-reversal chaotic cavity. IEEE Trans. Ultrason., Ferroelectr., Frequency Control 52, 1489–1497 (2005). doi: 10.1109/TUFFC.2005.1516021
[10] Cox, B. T. & Beard, P. C. Photoacoustic tomography with a single detector in a reverberant cavity. J. Acoustical Soc. Am. 125, 1426–1436 (2009). doi: 10.1121/1.3068445
[11] Brown, M. D. et al. Reverberant cavity photoacoustic imaging. Optica 6, 821–822 (2019). doi: 10.1364/OPTICA.6.000821
[12] Li, Y. et al. Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption. Nat. Photonics 14, 164–170 (2020). doi: 10.1038/s41566-019-0576-2
[13] Li, Y. et al. Photoacoustic topography through an ergodic relay for functional imaging and biometric application in vivo. J. Biomed. Opt. 25, 070501 (2020).
[14] Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014). doi: 10.1038/nmeth.2964
[15] Fujita, K. et al. Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays. Opt. Commun. 174, 7–12 (2000). doi: 10.1016/S0030-4018(99)00662-8
[16] Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics 11, 714–721 (2017). doi: 10.1038/s41566-017-0027-x
[17] Wong, T. T. W. et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv. 3, 1602168 (2017). doi: 10.1126/sciadv.1602168
[18] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012). doi: 10.1126/science.1216210
[19] Xia, J., Yao, J. J. & Wang, L. V. Photoacoustic tomography: principles and advances. Prog. Electromagnetics Res. 147, 1–22 (2014). doi: 10.2528/PIER14032303
[20] Bioucas-Dias, J. M. & Figueiredo, M. A. T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16, 2992–3004 (2007). doi: 10.1109/TIP.2007.909319
[21] Laser Institute of America. American National Standard for the safe use of lasers (American National Standards Institute, 2000).