[1] Withrington R. J. Optical Design Of A Holographic Visor Helmet-Mounted Display. Proceedings Volume 0147, Computer-Aided Optical Design; (1978)
[2] Jerald, J. The VR Book: Human-Centered Design for Virtual Reality. (New York: Association for Computing Machinery, M & C, Morgan & Claypool, 2016).
[3] Barfield, B. Fundamentals of Wearable Computers and Augmented Reality. 2nd edn. (Boca Raton: CRC Press, 2016).
[4] Inzerillo, L. Augmented reality: past, present, future. Proceedings of SPIE 8649, the Engineering Reality of Virtual Reality 2013. Burlingame, California, United States: SPIE, 2013.
[5] Azuma, R. T. A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6, 355-385 (1997).
[6] Cakmakci, O. & Rolland, J. Head-worn displays: a review. Journal of Display Technology 2, 199-216 (2006). doi: 10.1109/JDT.2006.879846
[7] Rolland, J. & Cakmakci, O. Head-worn displays: the future through new eyes. Optics and Photonics News 20, 20-27 (2009).
[8] van Krevelen, D. W. F. & Poelman, R. A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality 9, 1-20 (2010).
[9] Low, K. L. et al. Combining head-mounted and projector-based displays for surgical training. Proceedings of the IEEE Virtual Reality, 2003. Los Angeles, CA, USA: IEEE, 2003.
[10] Amitai, Y., Friesem, A. A. & Weiss, V. Holographic elements with high efficiency and low aberrations for helmet displays. Applied Optics 28, 3405-3416 (1989). doi: 10.1364/AO.28.003405
[11] Kress B. et al. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets, SPIE Press, SBN: 9781510634336, Volume: PM316 (2020)
[12] Kress, B. C. & Cummins, W. J. 11-1: Invited paper: towards the ultimate mixed reality experience: hololens display architecture choices. SID Symposium Digest of Technical Papers 48, 127-131 (2017).
[13] Miller, J. M. et al. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection. Applied Optics 36, 5717-5727 (1997).
[14] Kimmel, J. et al. A novel diffractive backlight concept for mobile displays. Journal of the Society for Information Display 16, 351-357 (2008).
[15] Kimmel, J. et al. 55.3: Diffractive backlight light guide plates in mobile electrowetting display applications. SID Symposium Digest of Technical Papers 40, 826-829 (2009).
[16] Zhang, N. N. et al. Improved holographic waveguide display system. Applied Optics 54, 3645-3649 (2015).
[17] Yoshida, T. et al. A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses. Journal of the Society for Information Display 26, 280-286 (2018).
[18] Mukawa, H. et al. 8.4: Distinguished paper: a full color eyewear display using holographic planar waveguides. SID Symposium Digest of Technical Papers 39, 89-92 (2008).
[19] Oku, T. et al. 15.2: High-luminance see-through eyewear display with novel volume hologram waveguide technology. SID Symposium Digest of Technical Papers 46, 192-195 (2015).
[20] Sarayeddine K. et al. Key challenges to affordable see-through wearable displays: the missing link for mobile AR mass deployment. Proceedings Volume 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV; 87200D (2013)
[21] Äyräs, P. , Saarikko, P. & Levola, T. Exit pupil expander with a large field of view based on diffractive optics. Journal of the Society of Information Display 17, 659-664 (2009).
[22] Levola, T. Diffractive optics for virtual reality displays. Journal of the Society for Information Display 14, 467-475 (2006).
[23] Kress, B. & Shin, M. Diffractive and holographic optics as optical combiners in head mounted displays. Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. Zurich, Switzerland: ACM, 2013.
[24] Cameron, A. A. Optical waveguide technology and its application in head-mounted displays. Proceedings of SPIE 8383, Head- and Helmet-Mounted Displays XVII; and Display Technologies and Applications for Defense, Security, and Avionics VI. Baltimore, Maryland, United States: SPIE, 2012.
[25] Homan, M. The use of optical waveguides in head up display (HUD) applications. Proceedings of SPIE 8736, Display Technologies and Applications for Defense, Security, and Avionics VII. Baltimore, Maryland, United States: SPIE, 2013.
[26] Cheng, D. W. et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Optics Express 22, 20705-20719 (2014). doi: 10.1364/OE.22.020705
[27] Jurbergs, D. et al. New recording materials for the holographic industry. Proceedings of SPIE 7233, Practical Holography XXIII: Materials and Applications. San Jose, California, United States: SPIE, 2009.
[28] Alastair, G. DigiLens: Design and Fabrication Considerations for Holographic Waveguide AR Displays. Proceedings of SPIE 11764, SPIE AVR21 Industry Talks II, SPIE, 2021.
[29] Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Labs Technical Journal 48, 2909-2947 (1969). doi: 10.1002/j.1538-7305.1969.tb01198.x
[30] Curtis, K. & Psaltis, D. Cross talk in phase-coded holographic memories. Journal of the Optical Society of America A 10, 2547-2550 (1993).
[31] Golub, M. A., Friesem, A. A. & Eisen, L. Bragg properties of efficient surface relief gratings in the resonance domain. Optics Communications 235, 261-267 (2004). doi: 10.1016/j.optcom.2004.02.069
[32] Moharam, M. G. et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. Journal of the Optical Society of America A 12, 1077-1086 (1995). doi: 10.1364/JOSAA.12.001077
[33] Estepa, L. A. et al. Corrected coupled-wave theory for non-slanted reflection gratings. Proceedings of SPIE 8171, Physical Optics. Marseille, France: SPIE, 2011.
[34] Liu, V et al. S4: A free electromagnetic solver for layered periodic structures, Computer Physics Communications 183 (2012) 2233–2244, Elsevier 2021.
[35] da Silva Ferreira A. et al. Development of a computational environment for MIT electromagnetic equation propagation simulator. 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2017, pp. 1-4, doi: 10.1109/INTERCON.2017.8079691. doi: 10.1109/INTERCON.2017.8079691
[36] Levola, T. et al. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Opt. Express 15, 2067-2074 (2007).
[37] Hellmann C. et al. Physical-optics analysis of lightguides for augmented and mixed reality glasses. Proceedings Volume 11062, Digital Optical Technologies SPIE 2019.
[38] Farn, M. W. Binary gratings with increased efficiency. Applied Optics 31, 4453-4458 (1992). doi: 10.1364/AO.31.004453
[39] Kress, B. C. & Meyrueis, P. Applied Digital Optics: From Micro-Optics to Nanophotonics. (Chichester: John Wiley and Sons Publisher, 2009).
[40] Quaranta, G. et al. Steering and filtering white light with resonant waveguide gratings. Proceedings of SPIE 10354, Nanoengineering: Fabrication, Properties, Optics, and Devices XIV. San Diego, California, United States: SPIE, 2017.
[41] Basset, G. Resonant screens focus on the optics of AR (Conference Presentation). Proceedings of SPIE 10676, Digital Optics for Immersive Displays. Strasbourg, France: SPIE, 2018.
[42] Genevet, P. et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139-152 (2017).
[43] Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953-957 (2018). doi: 10.1515/nanoph-2018-0004
[44] Chen, W. T. et al. Broadband achromatic metasurface-refractive optics. Nano Letters 18, 7801-7808 (2018).