[1] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev 2011; 5: 81–101. doi: 10.1002/lpor.200900047
[2] Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt Commun 2002; 207: 169–175. doi: 10.1016/S0030-4018(02)01524-9
[3] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev 2014; 1: 041303. doi: 10.1063/1.4904320
[4] Preece D, Bowman R, Linnenberger A, Gibson G, Serati D et al. Increasing trap stiffness with position clamping in holographic optical tweezers. Opt Express 2009; 17: 22718–22725. doi: 10.1364/OE.17.022718
[5] Zhu GH, van Howe J, Durst M, Zipfel W, Xu C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt Express 2005; 13: 2153–2159. doi: 10.1364/OPEX.13.002153
[6] Oron D, Silberberg Y. Spatiotemporal coherent control using shaped, temporally focused pulses. Opt Express 2005; 13: 9903–9908. doi: 10.1364/OPEX.13.009903
[7] Durfee CG, Squier JA. Breakthroughs in photonics 2014: spatiotemporal focusing: advances and applications. IEEE Photonics J 2014; 7: 0700806.
[8] Choi H, Yew EYS, Hallacoglu B, Fantini S, Sheppard CJR et al. Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination. Biomed Opt Exp 2013; 4: 995–1005. doi: 10.1364/BOE.4.000995
[9] Lien CH, Lin CY, Chen SJ, Chien FC. Dynamic particle tracking via temporal focusing multiphoton microscopy with astigmatism imaging. Opt Express 2014; 22: 27290–27299. doi: 10.1364/OE.22.027290
[10] Dana H, Marom A, Paluch S, Dvorkin R, Brosh I et al. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks. Nat Commun 2014; 5: 3997. doi: 10.1038/ncomms4997
[11] Song QY, Nakamura A, Hirosawa K, Isobe K, Midorikawa K et al. Two-dimensional spatiotemporal focusing of femtosecond pulses and its applications in microscopy. Rev Sci Inst 2015; 86: 083701. doi: 10.1063/1.4927532
[12] Papagiakoumou E, Bègue A, Leshem B, Schwartz O, Stell BM et al. Functional patterned multiphoton excitation deep inside scattering tissue. Nat Photonics 2013; 7: 274–278. doi: 10.1038/nphoton.2013.9
[13] Dana H, Kruger N, Ellman A, Shoham S. Line temporal focusing characteristics in transparent and scattering media. Opt Express 2013; 21: 5677–5687. doi: 10.1364/OE.21.005677
[14] Vitek DN, Adams DE, Johnson A, Tsai PS, Backus S et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt Express 2010; 18: 18086–18094. doi: 10.1364/OE.18.018086
[15] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci Appl 2014; 3: e169. doi: 10.1038/lsa.2014.50
[16] He F, Xu H, Cheng Y, Ni JL, Xiong H et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 2010; 35: 1106–1108. doi: 10.1364/OL.35.001106
[17] He F, Cheng Y, Lin JT, Ni JL, Xu ZZ et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining. N J Phys 2011; 13: 083014. doi: 10.1088/1367-2630/13/8/083014
[18] Vitek DN, Block E, Bellouard Y, Adams DE, Backus S et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt Express 2010; 18: 24673–24678. doi: 10.1364/OE.18.024673
[19] Block E, Thomas J, Durfee C, Squier J. Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems. Opt Lett 2014; 39: 6915–6918. doi: 10.1364/OL.39.006915
[20] Zhang S, Wyrowski F, Kammel R, Nolte S A brief analysis on pulse front tilt in simultaneous spatial and temporal focusing Proceedings of SPIE 8972, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XIV, 89721B, 7 March 2014; San Francisco, CA, USA. SPIE: San Francisco, CA, USA, 2014.
[21] Block E, Greco M, Vitek D, Masihzadeh O, Ammar DA et al. Simultaneous spatial and temporal focusing for tissue ablation. Biomed Opt Exp 2013; 4: 831–841. doi: 10.1364/BOE.4.000831
[22] Poland SP, Krstajić N, Coelho S, Tyndall D, Walker RJ et al. Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo. Opt Lett 2014; 39: 6013–6016. doi: 10.1364/OL.39.006013
[23] Waller EH, von Freymann G. Multi foci with diffraction limited resolution. Opt Express 2013; 21: 21708–21713. doi: 10.1364/OE.21.021708
[24] Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam. Appl Phys Lett 2013; 102: 084103. doi: 10.1063/1.4794030
[25] Hasegawa S, Ito H, Toyoda H, Hayasaki Y. Massively parallel femtosecond laser processing. Opt Express 2016; 24: 18513–18524. doi: 10.1364/OE.24.018513
[26] Hernandez O, Papagiakoumou E, Tanesee D, Felin K, Wyart C et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 2016; 7: 11928. doi: 10.1038/ncomms11928
[27] Papagiakoumou E, de Sars V, Oron D, Emiliani V. Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt Express 2008; 16: 22039–22047. doi: 10.1364/OE.16.022039
[28] Kim D, So TC. High-throughput three-dimensional lithographic microfabrication. Opt Lett 2010; 35: 1602–1604. doi: 10.1364/OL.35.001602
[29] Li YC, Cheng LC, Chang CY, Lien CH, Campagnola PJ et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt Express 2012; 20: 19030–19038. doi: 10.1364/OE.20.019030
[30] Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J et al. Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 2010; 7: 848–854. doi: 10.1038/nmeth.1505
[31] Durst ME, Zhu GH, Xu C. Simultaneous spatial and temporal focusing for axial scanning. Opt Express 2006; 14: 12243–12254. doi: 10.1364/OE.14.012243
[32] Leshem B, Hernandez O, Papagiakoumou E, Emiliani V, Oron D. When can temporally focused excitation be axially shifted by dispersion? Opt Express 2014; 22: 7087–7098. doi: 10.1364/OE.22.007087
[33] Žurauskas M, Barnstedt O, Frade-Rodriguez M, Waddell S, Booth MJ. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomed Opt Exp 2017; 8: 4369–4379. doi: 10.1364/BOE.8.004369
[34] Sun BS, Salter PS, Booth MJ. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses. J Opt Soc Am A 2014; 31: 765–772. doi: 10.1364/JOSAA.31.000765
[35] Chang CY, LCheng LC, Su HW, Hu YY, Cho KC et al. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy. Biomed Opt Express 2014; 5: 1768–1777. doi: 10.1364/BOE.5.001768
[36] Greco MJ, Block E, Meier AK, Beaman A, Cooper S et al. Spatial-spectral characterization of focused spatially chirped broadband laser beams. Appl Opt 2015; 54: 9818–9822. doi: 10.1364/AO.54.009818
[37] Durfee CG, Greco MJ, Block E, Vitek D, Squier JA. Intuitive analysis of space-time focusing with double-ABCD calculation. Opt Express 2012; 20: 14244–14259. doi: 10.1364/OE.20.014244
[38] Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express 2007; 15: 1913–1922. doi: 10.1364/OE.15.001913
[39] Jesacher A, Booth MJ. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express 2010; 18: 21090–21099. doi: 10.1364/OE.18.021090
[40] Hasegawa S, Hayasaki Y. Second-harmonic optimization of computer-generated hologram. Opt Lett 2011; 36: 2943–2945. doi: 10.1364/OL.36.002943
[41] Salter PS, Booth MJ Dynamic optical methods for direct laser written waveguides Proceedings of SPIE 8613, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics Ⅵ, 86130A, 5 March 2013; San Francisco, CA, USA, SPIE: San Francisco, CA, USA. 2013.
[42] Silvennoinen M, Kaakkunen J, Paivasaari K, Vahimaa P. Parallel femtosecond laser ablation with individually controlled intensity. Opt Express 2014; 22: 2603–2608. doi: 10.1364/OE.22.002603
[43] Thalhammer G, Bowman RW, Love GD, Padgett MJ, Ritsch-Marte M. Speeding up liquid crystal SLMs using overdrive with phase change reduction. Opt Express 2013; 21: 1779–1797. doi: 10.1364/OE.21.001779
[44] Joglekar AP, Liu HH, Meyhöfer E, Mourou G, Hunt AJ. Optics at critical intensity: applications to nanomorphing. Proc Natl Acad Sci USA 2004; 101: 5856–5861. doi: 10.1073/pnas.0307470101
[45] Hayasaki Y, Nishitani M, Takahashi H, Yamamoto A, Takita H et al. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl Phys A 2012; 107: 357–362. doi: 10.1007/s00339-012-6801-1