[1] Weisbuch, C. et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314-3317 (1992). doi: 10.1103/PhysRevLett.69.3314
[2] Pau, S. et al. Observation of a laserlike transition in a microcavity exciton polariton system. Phys. Rev. A 54, R1789-R1792 (1996). doi: 10.1103/PhysRevA.54.R1789
[3] Imamoğlu, A. et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250-4253 (1996). doi: 10.1103/PhysRevA.53.4250
[4] Deng, H. et al. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318-15323 (2003). doi: 10.1073/pnas.2634328100
[5] Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348-352 (2013). doi: 10.1038/nature12036
[6] Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409-414 (2006). doi: 10.1038/nature05131
[7] Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805-810 (2009). doi: 10.1038/nphys1364
[8] Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4, 706-710 (2008). doi: 10.1038/nphys1051
[9] Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974-976 (2009). doi: 10.1126/science.1177980
[10] Shimada, R. et al. Cavity polaritons in ZnO-based hybrid microcavities. Appl. Phys. Lett. 92, 011127 (2008). doi: 10.1063/1.2830022
[11] Tawara, T. et al. Cavity polaritons in InGaN microcavities at room temperature. Phys. Rev. Lett. 92, 256402 (2004). doi: 10.1103/PhysRevLett.92.256402
[12] Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316-3319 (1999). doi: 10.1103/PhysRevLett.82.3316
[13] Plumhof, J. D. et al. Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater. 13, 247-252 (2014). doi: 10.1038/nmat3825
[14] Daskalakis, K. S. et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271-278 (2014). doi: 10.1038/nmat3874
[15] Grant, R. T. et al. Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye. Adv. Opt. Mater. 4, 1615-1623 (2016). doi: 10.1002/adom.201600337
[16] Agranovich, V., Atanasov, R. & Bassani, F. Hybrid interface excitons in organic-inorganic quantum wells. Solid State Commun. 92, 295-301 (1994). doi: 10.1016/0038-1098(94)90705-6
[17] Agranovich, V., Benisty, H. & Weisbuch, C. Organic and inorganic quantum wells in a microcavity: frenkel-Wannier-Mott excitons hybridization and energy transformation. Solid State Commun. 102, 631-636 (1997). doi: 10.1016/S0038-1098(96)00433-4
[18] Agranovich, V. M. et al. Excitons and optical nonlinearities in hybrid organic-inorganic nanostructures. J. Phys.: Condens. Matter 10, 9369-9400 (1998). doi: 10.1088/0953-8984/10/42/005
[19] Holmes, R. J. et al. Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity. Phys. Rev. B 74, 235211 (2006). doi: 10.1103/PhysRevB.74.235211
[20] Paschos, G. G. et al. Hybrid organic-inorganic polariton laser. Sci. Rep. 7, 11377 (2017). doi: 10.1038/s41598-017-11726-8
[21] Wenus, J. et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Phys. Rev. B 74, 35212 (2006). doi: 10.1103/PhysRevB.74.035212
[22] Slootsky, M. et al. Room temperature frenkel-wannier-mott hybridization of degenerate excitons in a strongly coupled microcavity. Phys. Rev. Lett. 112, 076401 (2014). doi: 10.1103/PhysRevLett.112.076401
[23] Flatten, L. C. et al. Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 8, 14097 (2017). doi: 10.1038/ncomms14097
[24] Zhong, X. L. et al. Energy transfer between spatially separated entangled molecules. Angew. Chem. Int. Ed. 56, 9034-9038 (2017). doi: 10.1002/anie.201703539
[25] Georgiou, K. et al. Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity. ACS Photonics 5, 258-266 (2018). doi: 10.1021/acsphotonics.7b01002
[26] Du, M. et al. Theory for polariton-assisted remote energy transfer. Chem. Sci. 9, 6659-6669 (2018). doi: 10.1039/C8SC00171E
[27] Stefanatos, D. & Paspalakis, E. Efficient entanglement generation between exciton-polaritons using shortcuts to adiabaticity. Opt. Lett. 43, 3313-3316 (2018). doi: 10.1364/OL.43.003313
[28] Portolan, S. et al. Generation of hyper-entangled photon pairs in coupled microcavities. New J. Phys. 16, 063030 (2014). doi: 10.1088/1367-2630/16/6/063030
[29] Einkemmer, L. et al. Polarization entanglement generation in microcavity polariton devices. Phys. Status Solidi (B) 252, 1749-1756 (2015). doi: 10.1002/pssb.201451704
[30] Armitage, A. et al. Polariton-induced optical asymmetry in semiconductor microcavities. Phys. Rev. B 58, 15367-15370 (1998). doi: 10.1103/PhysRevB.58.15367
[31] Stelitano, S. et al. Vertical coupled double organic microcavities. Appl. Phys. Lett. 95, 093303 (2009). doi: 10.1063/1.3216838
[32] Panzarini, G. et al. Exciton-light coupling in single and coupled semiconductor microcavities: polariton dispersion and polarization splitting. Phys. Rev. B 59, 5082-5089 (1999). doi: 10.1103/PhysRevB.59.5082
[33] Pavesi, L., Panzarini, G. & Andreani, L. C. All-porous silicon-coupled microcavities: experiment versus theory. Phys. Rev. B 58, 15794-15800 (1998). doi: 10.1103/PhysRevB.58.15794
[34] Stanley, R. P. et al. Coupled semiconductor microcavities. Appl. Phys. Lett. 65, 2093-2095 (1994). doi: 10.1063/1.112803
[35] Armitage, A. et al. Optically induced splitting of bright excitonic states in coupled quantum microcavities. Phys. Rev. B 57, 14877-14881 (1998). doi: 10.1103/PhysRevB.57.14877
[36] Skolnick, M. S. et al. Exciton polaritons in single and coupled microcavities. J. Lumin. 87-89, 25-29 (2000). doi: 10.1016/S0022-2313(99)00209-4
[37] Bayindir, M., Kural, C. & Ozbay, E. Coupled optical microcavities in one-dimensional photonic bandgap structures. J. Opt. A: Pure Appl. Opt. 3, S184-S189 (2001). doi: 10.1088/1464-4258/3/6/369
[38] Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982-3988 (2017). doi: 10.1021/acs.nanolett.7b01956
[39] Kavokin, A. V. et al. Microcavities. (Oxford University Press, Oxford, 2007).
[40] Shao, J. et al. Effective mass and exciton binding energy in ordered (Al)GaInP quantum wells evaluated by derivative of reflectivity. J. Appl. Phys. 91, 2553-2555 (2002). doi: 10.1063/1.1436553
[41] Mazza, L. et al. Microscopic theory of polariton lasing via vibronically assisted scattering. Phys. Rev. B 88, 075321 (2013). doi: 10.1103/PhysRevB.88.075321
[42] Lodden, G. H. & Holmes, R. J. Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor. Phys. Rev. B 82, 125317 (2010). doi: 10.1103/PhysRevB.82.125317
[43] Coles, D. M. et al. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712-719 (2014). doi: 10.1038/nmat3950
[44] Musser, A. J. et al. Intermolecular states in organic dye dispersions: excimers vs. aggregates. J. Mater. Chem. C. 5, 8380-8389 (2017). doi: 10.1039/C7TC02655B
[45] Savolainen, J. et al. Characterizing the functional dynamics of zinc phthalocyanine from femtoseconds to nanoseconds. J. Photochem. Photobiol. A: Chem. 196, 99-105 (2008). doi: 10.1016/j.jphotochem.2007.11.018
[46] Iagatti, A. et al. Photophysical processes occurring in a Zn-phthalocyanine in ethanol solution and on TiO2nanostructures. J. Phys. Chem. C. 119, 20256-20264 (2015). doi: 10.1021/acs.jpcc.5b04978
[47] Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691-3696 (2011). doi: 10.1002/adfm.201100756
[48] Cookson, T. et al. A yellow polariton condensate in a dye filled microcavity. Adv. Opt. Mater. 5, 1700203 (2017). doi: 10.1002/adom.201700203
[49] Furman, S. A. & Tikhonravov, A. V. Basics of Optics of Multilayer Systems. (pp. 1-102. Editions Frontiers, Gif-sur Yvette, 1992).
[50] Shukla, M. et al. Elementary approach to calculate quantum efficiency of polymer light emitting diodes. Indian J. Pure Appl. 49, 142-145 (2011). http://cn.bing.com/academic/profile?id=142eebd1eac6f22856ec2247fd0bc996&encoded=0&v=paper_preview&mkt=zh-cn