| [1] | Liu, B. L. et al. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduction and Targeted Therapy 9, 175 (2024). doi: 10.1038/s41392-024-01856-7 |
| [2] | Wan, Y. L. et al. Conquering the hypoxia limitation for photodynamic therapy. Advanced Materials 33, 2103978 (2021). doi: 10.1002/adma.202103978 |
| [3] | Kwiatkowski, S. et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy 106, 1098-1107 (2018). |
| [4] | Pham, T. C. et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chemical Reviews 121, 13454-13619 (2021). doi: 10.1021/acs.chemrev.1c00381 |
| [5] | Correia, J. H. et al. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 13, 1332-1332 (2021). doi: 10.3390/pharmaceutics13091332 |
| [6] | Wu, H., Minamide, T. & Yano, T. Role of photodynamic therapy in the treatment of esophageal cancer. Digestive Endoscopy 31, 508-516 (2019). doi: 10.1111/den.13353 |
| [7] | Kubrak, T. et al. Advances in management of bladder cancer-the role of photodynamic therapy. Molecules 27, 731 (2022). doi: 10.3390/molecules27030731 |
| [8] | Shafirstein, G. et al. Photodynamic therapy of non-small cell lung cancer. narrative review and future directions. Annals of the American Thoracic Society 13, 265-275 (2016). |
| [9] | Hu, Y. B. et al. Fiber optic devices for diagnostics and therapy in photomedicine. Advanced Optical Materials 12, 2400478 (2024). doi: 10.1002/adom.202400478 |
| [10] | Sorrin, A. J. et al. Photodynamic therapy and the biophysics of the tumor microenvironment. Photochemistry and Photobiology 96, 232-259 (2020). doi: 10.1111/php.13209 |
| [11] | Batrakova, E. V., Gendelman, H. E. & Kabanov, A. V. Cell-mediated drug delivery. Expert Opinion on Drug Delivery 8, 415-433 (2011). doi: 10.1517/17425247.2011.559457 |
| [12] | Chu, D. F. et al. Neutrophil-based drug delivery systems. Advanced Materials 30, 1706245 (2018). doi: 10.1002/adma.201706245 |
| [13] | Abalymov, A. et al. Functionalization and magnetonavigation of T-lymphocytes functionalized via nanocomposite capsules targeting with electromagnetic tweezers. Nanomedicine: Nanotechnology, Biology and Medicine 57, 102742 (2024). doi: 10.1016/j.nano.2024.102742 |
| [14] | Litvinova, L. S. et al. Human mesenchymal stem cells as a carrier for a cell-mediated drug delivery. Frontiers in Bioengineering and Biotechnology 10, 796111 (2022). doi: 10.3389/fbioe.2022.796111 |
| [15] | Han, X., Wang, C. & Liu, Z. Red blood cells as smart delivery systems. Bioconjugate Chemistry 29, 852-860 (2018). doi: 10.1021/acs.bioconjchem.7b00758 |
| [16] | Na, Y. R., Kim, S. W. & Seok, S. H. A new era of macrophage-based cell therapy. Experimental & Molecular Medicine 55, 1945-1954 (2023). |
| [17] | Hao, N. B. et al. Macrophages in tumor microenvironments and the progression of tumors. Clinical & Developmental Immunology 2012, 948098 (2012). |
| [18] | Yang, S. X. et al. Advances in engineered macrophages: a new frontier in cancer immunotherapy. Cell Death & Disease 15, 238 (2024). |
| [19] | Wróblewska, A. et al. Macrophages as promising carriers for nanoparticle delivery in anticancer therapy. International Journal of Nanomedicine 18, 4521-4539 (2023). doi: 10.2147/IJN.S421173 |
| [20] | Bart, V. M. T. et al. Macrophage reprogramming for therapy. Immunology 163, 128-144 (2021). doi: 10.1111/imm.13300 |
| [21] | Xuan, M. J. et al. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Applied Materials & Interfaces 8, 9610-9618 (2016). |
| [22] | Xue, F. F. et al. Macrophage-mediated delivery of magnetic nanoparticles for enhanced magnetic resonance imaging and magnetothermal therapy of solid tumors. Journal of Colloid and Interface Science 629, 554-562 (2023). doi: 10.1016/j.jcis.2022.08.186 |
| [23] | Ermakov, A. V. et al. In vitro bioeffects of polyelectrolyte multilayer microcapsules post-loaded with water-soluble cationic photosensitizer. Pharmaceutics 12, 610 (2020). doi: 10.3390/pharmaceutics12070610 |
| [24] | Bratashov, D. N. et al. Raman imaging and photodegradation study of phthalocyanine containing microcapsules and coated particles. Journal of Raman Spectroscopy 42, 1901-1907 (2011). doi: 10.1002/jrs.2938 |
| [25] | Kopach, O. et al. Nano-engineered microcapsules boost the treatment of persistent pain. Drug Delivery 25, 435-447 (2018). doi: 10.1080/10717544.2018.1431981 |
| [26] | Kalenichenko, D. V. et al. Multilayered polymer capsules for targeted delivery of antitumor compounds. Physics of Atomic Nuclei 86, 2496-2499 (2023). doi: 10.1134/S1063778823110194 |
| [27] | Tong, W. J., Song, X. X. & Gao, C. Y. Layer-by-layer assembly of microcapsules and their biomedical applications. Chemical Society Reviews 41, 6103-6124 (2012). doi: 10.1039/c2cs35088b |
| [28] | Yu, W. et al. Cellular uptake of poly(allylamine hydrochloride) microcapsules with different deformability and its influence on cell functions. Journal of Colloid and Interface Science 465, 149-157 (2016). doi: 10.1016/j.jcis.2015.11.065 |
| [29] | Antipina, M. N. & Sukhorukov, G. B. Remote control over guidance and release properties of composite polyelectrolyte based capsules. Advanced Drug Delivery Reviews 63, 716-729 (2011). doi: 10.1016/j.addr.2011.03.012 |
| [30] | Tong, W. J., Gao, C. Y. & Möhwald, H. Stable weak polyelectrolyte microcapsules with pH-responsive permeability. Macromolecules 39, 335-340 (2006). doi: 10.1021/ma0517648 |
| [31] | Musin, E. V. et al. New sight at the organization of layers of multilayer polyelectrolyte microcapsules. Scientific Reports 11, 14040 (2021). doi: 10.1038/s41598-021-93565-2 |
| [32] | Debnath, M. et al. Protein corona formation on lipid nanoparticles negatively affects the NLRP3 inflammasome activation. Bioconjugate Chemistry 34, 1766-1779 (2023). doi: 10.1021/acs.bioconjchem.3c00329 |
| [33] | Sindeeva, O. A. et al. Engineering colloidal systems for cell manipulation, delivery, and tracking. Advances in Colloid and Interface Science 340, 103462 (2025). doi: 10.1016/j.cis.2025.103462 |
| [34] | Saha, K. et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano 10, 4421-4430 (2016). doi: 10.1021/acsnano.6b00053 |
| [35] | Caprifico, A. E. et al. Overcoming the protein corona in chitosan-based nanoparticles. Drug Discovery Today 26, 1825-1840 (2021). doi: 10.1016/j.drudis.2021.04.014 |
| [36] | Lomova, M. V. et al. Multilayer capsules of bovine serum albumin and tannic acid for controlled release by enzymatic degradation. ACS Applied Materials & Interfaces 7, 11732-11740 (2015). |
| [37] | Xu, W. et al. Insight into the interaction between tannin acid and bovine serum albumin from a spectroscopic and molecular docking perspective. RSC Advances 13, 10592-10599 (2023). doi: 10.1039/D3RA00375B |
| [38] | Demina, P. A. et al. Photoconvertible markers for study individual myoblast migration into the macrophage's colony. Optical Materials 157, 116148 (2024). doi: 10.1016/j.optmat.2024.116148 |
| [39] | Sindeeva, O. A. et al. Single mesenchymal stromal cell migration tracking into glioblastoma using photoconvertible vesicles. Nanomaterials (Basel) 14, 1215 (2024). doi: 10.3390/nano14141215 |
| [40] | Taciak, B. et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS One 13, e0198943 (2018). |
| [41] | Herb, M. et al. Macrophage variants in laboratory research: most are well done, but some are RAW. Frontiers in Cellular and Infection Microbiology 14, 1457323 (2024). doi: 10.3389/fcimb.2024.1457323 |
| [42] | Guo, Q. & Qian, Z. M. Macrophage based drug delivery: key challenges and strategies. Bioactive Materials 38, 55-72 (2024). doi: 10.1016/j.bioactmat.2024.04.004 |
| [43] | Haroon, H. B. et al. A brief history of long circulating nanoparticles. Advanced Drug Delivery Reviews 188, 114396 (2022). doi: 10.1016/j.addr.2022.114396 |
| [44] | Summer, M. et al. Inflammatory response of nanoparticles: mechanisms, consequences, and strategies for mitigation. Chemosphere 363, 142826 (2024). doi: 10.1016/j.chemosphere.2024.142826 |
| [45] | Chen, L. J. et al. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond) 13, 1939-1962 (2018). doi: 10.2217/nnm-2018-0076 |
| [46] | Andrade, R. G. D. et al. Modulation of macrophages M1/M2 polarization using carbohydrate-functionalized polymeric nanoparticles. Polymers 13, 88 (2021). |
| [47] | Feito, M. J. et al. Response of RAW 264.7 and J774A. 1 macrophages to particles and nanoparticles of a mesoporous bioactive glass: a comparative study. Colloids and Surfaces B: Biointerfaces 208, 112110 (2021). |
| [48] | Strizova, Z. et al. M1/M2 macrophages and their overlaps - myth or reality? Clinical Science 137, 1067-1093 (2023). |
| [49] | Bygd, H. C., Forsmark, K. D. & Bratlie, K. M. Altering in vivo macrophage responses with modified polymer properties. Biomaterials 56, 187-197 (2015). doi: 10.1016/j.biomaterials.2015.03.042 |
| [50] | Toda, S. et al. Effects of polymeric materials on activation of THP-1 cell-derived macrophages during differentiation induced by PMA. Advanced Biomedical Engineering 13, 1-10 (2024). doi: 10.14326/abe.13.1 |
| [51] | Jiang, W. L. et al. Polystyrene nanoplastics of different particle sizes regulate the polarization of pro-inflammatory macrophages. Scientific Reports 14, 16329 (2024). doi: 10.1038/s41598-024-67289-y |
| [52] | Zhou, J. W. et al. Tumor-associated macrophages: recent insights and therapies. Frontiers in Oncology 10, 188 (2020). doi: 10.3389/fonc.2020.00188 |
| [53] | Jackson, J. et al. The impact of biomaterial characteristics on macrophage phenotypes in tissue engineering: a review. Plastic and Aesthetic Research 12, 12 (2025). |
| [54] | Ma, P. F. et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. Journal of Hepatology 67, 770-779 (2017). doi: 10.1016/j.jhep.2017.05.022 |
| [55] | Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nature Reviews Clinical Oncology 17, 504-515 (2020). doi: 10.1038/s41571-020-0352-8 |
| [56] | Funes, S. C. et al. Implications of macrophage polarization in autoimmunity. Immunology 154, 186-195 (2018). doi: 10.1111/imm.12910 |
| [57] | Sapach, A. Y. et al. Macrophage in vitro and in vivo tracking via anchored microcapsules. ACS Applied Materials & Interfaces 14, 51579-51592 (2022). |
| [58] | Kuznetsov, S. S. et al. Features of morphological changes in experimental CT-26 tumors growth. Sovremennye Tehnologii v Medicine 7, 32-39 (2015). doi: 10.17691/stm2015.7.3.04 |
| [59] | Li, G. Y. et al. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discovery 10, 466 (2024). doi: 10.1038/s41420-024-02236-4 |
| [60] | Wei, F. M. et al. Recent progress in metal complexes functionalized nanomaterials for photodynamic therapy. Chemical Communications 59, 6956-6968 (2023). doi: 10.1039/D3CC01355C |
| [61] | Sukhorukov, G. B. et al. Physical chemistry of encapsulation and release. Physical Chemistry Chemical Physics 6, 4078-4089 (2004). doi: 10.1039/B406006G |
| [62] | Pechenkin, M. A. , Möhwald, H. & Volodkin, D. V. pH- and salt-mediated response of layer-by-layer assembled PSS/PAH microcapsules: fusion and polymer exchange. Soft Matter 8, 8659-8665 (2012). |
| [63] | Borodina, T. N. et al. Enzymatic degradation of capsules based on polyelectrolyte polypeptide–polysaccharide complex for the controlled release of DNA. Polymer Science, Series B 63, 514-520 (2021). doi: 10.1134/S156009042105002X |
| [64] | Guo, Y. et al. Recent progress in protein-polyphenol assemblies for biomedical applications. Langmuir 40, 2005-2014 (2024). doi: 10.1021/acs.langmuir.3c03244 |
| [65] | Han, Y. Y. et al. Encapsulation of photosensitizer into multilayer microcapsules by combination of spontaneous deposition and heat-induced shrinkage for photodynamic therapy. Macromolecular Bioscience 12, 1436-1442 (2012). doi: 10.1002/mabi.201200191 |
| [66] | Yang, Y. et al. Multilayer microcapsules for FRET analysis and two-photon-activated photodynamic therapy. Angewandte Chemie International Edition 55, 13538-13543 (2016). doi: 10.1002/anie.201605905 |
| [67] | de la Torre, P. et al. Cell-based nanoparticles delivery systems for targeted cancer therapy: lessons from anti-angiogenesis treatments. Molecules 25, 715 (2020). doi: 10.3390/molecules25030715 |
| [68] | Summers, C. et al. Neutrophil kinetics in health and disease. Trends in Immunology 31, 318-324 (2010). doi: 10.1016/j.it.2010.05.006 |
| [69] | Verkhovskii, R. et al. Effect of size on magnetic polyelectrolyte microcapsules behavior: biodistribution, circulation time, interactions with blood cells and immune system. Pharmaceutics 13, 2147 (2021). doi: 10.3390/pharmaceutics13122147 |
| [70] | Demina, P. A. et al. Fluorescent convertible capsule coding systems for individual cell labeling and tracking. ACS Applied Materials & Interfaces 13, 19701-19709 (2021). |
| [71] | Liu, J. J. et al. Uptake of microcapsules with different stiffness and its influence on cell functions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 605, 125354 (2020). doi: 10.1016/j.colsurfa.2020.125354 |
| [72] | Pantos, A., Tsogas, I. & Paleos, C. M. Guanidinium group: a versatile moiety inducing transport and multicompartmentalization in complementary membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778, 811-823 (2008). doi: 10.1016/j.bbamem.2007.12.003 |
| [73] | De Geest, B. G. et al. Intracellularly degradable polyelectrolyte microcapsules. Advanced Materials 18, 1005-1009 (2006). doi: 10.1002/adma.200502128 |
| [74] | De Koker, S. et al. In vivo cellular uptake, degradation, and biocompatibility of polyelectrolyte microcapsules. Advanced Functional Materials 17, 3754-3763 (2007). doi: 10.1002/adfm.200700416 |
| [75] | Ghiman, R. et al. Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. Journal of Molecular Structure 1248, 131366 (2022). doi: 10.1016/j.molstruc.2021.131366 |
| [76] | Terentyuk, G. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Research 7, 325-337 (2014). doi: 10.1007/s12274-013-0398-3 |
| [77] | Sergeev, I. S. et al. Photoinduced toxicity caused by gold nanozymes and photodynamic dye encapsulated in submicron polymer shell. Particle & Particle Systems Characterization 41, 2300149 (2024). |
| [78] | Mujtaba, J. et al. Micro-bio-chemo-mechanical-systems: micromotors, microfluidics, and nanozymes for biomedical applications. Advanced Materials 33, 2007465 (2021). doi: 10.1002/adma.202007465 |
| [79] | Barmin, R. A. et al. Albumin microbubbles conjugated with zinc and aluminum phthalocyanine dyes for enhanced photodynamic activity. Colloids and Surfaces B: Biointerfaces 219, 112856 (2022). doi: 10.1016/j.colsurfb.2022.112856 |
| [80] | Barmin, R. A. et al. Air-filled bubbles stabilized by gold nanoparticle/photodynamic dye hybrid structures for theranostics. Nanomaterials 11, 415 (2021). doi: 10.3390/nano11020415 |
| [81] | Kamizela, E. et al. Photon-based innovations in oncology: precise diagnostic techniques and advanced therapies. Photonics 11, 1201 (2024). doi: 10.3390/photonics11121201 |
| [82] | Cao, H. Z. et al. Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer. Advanced Healthcare Materials 10, 2001489 (2021). doi: 10.1002/adhm.202001489 |
| [83] | Volodkin, D. V., Larionova, N. I. & Sukhorukov, G. B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules 5, 1962-1972 (2004). doi: 10.1021/bm049669e |
| [84] | Sukhorukov, G. B. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 137, 253-266 (1998). |
| [85] | De Koker, S. et al. Polyelectrolyte microcapsules as antigen delivery vehicles to dendritic cells: uptake, processing, and cross-presentation of encapsulated antigens. Angewandte Chemie International Edition 48, 8485-8489 (2009). doi: 10.1002/anie.200903769 |
| [86] | German, S. V. et al. High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles. Scientific Reports 8, 17763 (2018). doi: 10.1038/s41598-018-35846-x |
| [87] | Mishriki, S. et al. Fibroblasts accelerate formation and improve reproducibility of 3D cellular structures printed with magnetic assistance. Research 2020, 3970530 (2020). |