[1] Lopez GA, Estevez M-C, Soler M, Lechuga LM. Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration. Nanophotonics 2016; 6: 123–136. doi: 10.1515/nanoph-2016-0101
[2] Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J et al. Biosensing with plasmonic nanosensors. Nat Mater 2008; 7: 442–453. doi: 10.1038/nmat2162
[3] Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 2016; 15: 621–627. doi: 10.1038/nmat4609
[4] Di Fabrizio E, Schlücker S, Wenger J, Regmi R, Rigneault H et al. Roadmap on biosensing and photonics with advanced nano-optical methods. J Opt 2016; 18: 063003. doi: 10.1088/2040-8978/18/6/063003
[5] Brolo AG. Plasmonics for future biosensors. Nat Photon 2012; 6: 709–713. doi: 10.1038/nphoton.2012.266
[6] Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh S-H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 2012; 75: 036501. doi: 10.1088/0034-4885/75/3/036501
[7] Pallaoro A, Hoonejani MR, Braun GB, Meinhart CD, Moskovits M. Rapid identification by surface-enhanced raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 2015; 9: 4328–4336. doi: 10.1021/acsnano.5b00750
[8] Gao YK, Gan QQ, Bartoli FJ. Breakthroughs in photonics 2013: research highlights on biosensors based on plasmonic nanostructures. IEEE Photonics J 2014; 6: 0700805.
[9] Špačková B, Wrobel P, Bocková M, Homola J. Optical biosensors based on plasmonic nanostructures: a review. Proc IEEE 2016; 104: 2380–2408. doi: 10.1109/JPROC.2016.2624340
[10] Jackman JA, Ferhan AR, Cho N-J. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2017; 46: 3615–3660. doi: 10.1039/C6CS00494F
[11] Zhang Y, Zhen YR, Neumann O, Day JK, Nordlander P et al. Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat Commun 2014; 5: 4424. doi: 10.1038/ncomms5424
[12] Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ et al. Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat Biotechnol 2004; 22: 1133–1138. doi: 10.1038/nbt1003
[13] Punj D, Mivelle M, Moparthi SB, van Zanten TS, Rigneault H et al. A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nat Nanotechnol 2013; 8: 512–516. doi: 10.1038/nnano.2013.98
[14] Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG et al. Mid-infrared plasmonic biosensing with graphene. Science 2015; 349: 165–168. doi: 10.1126/science.aab2051
[15] Kravets VG, Schedin F, Jalil R, Britnell L, Gorbachev RV et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat Mater 2013; 12: 304–309. doi: 10.1038/nmat3537
[16] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108: 462–493. doi: 10.1021/cr068107d
[17] Mazzotta F, Johnson TW, Dahlin AB, Shaver J, Oh S-H et al. Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes. ACS Photonics 2015; 2: 256–262. doi: 10.1021/ph500360d
[18] Unser S, Bruzas I, He J, Sagle L. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 2015; 15: 15684–15716. doi: 10.3390/s150715684
[19] Soler M, Belushkin A, Cavallini A, Kebbi-Beghddi C, Greub G et al. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosens Bioelectron 2017; 94: 560–567. doi: 10.1016/j.bios.2017.03.047
[20] Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 2010; 10: 4962–4969. doi: 10.1021/nl103025u
[21] Im H, Shao HL, Park YI, Peterson VM, Castro CM et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 2014; 32: 490–495. doi: 10.1038/nbt.2886
[22] Yanik AA, Cetina AE, Huang M, Artara A, Mousavi SH et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci USA 2011; 108: 11784–11789. doi: 10.1073/pnas.1101910108
[23] Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. Point-of-care diagnostics: recent developments in a connected age. Anal Chem 2017; 89: 102–123. doi: 10.1021/acs.analchem.6b04630
[24] Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng 2008; 10: 107–144. doi: 10.1146/annurev.bioeng.10.061807.160524
[25] King K, Grazette LP, Paltoo DN, McDevitt JT, Sia SK et al. Point-of-care technologies for precision cardiovascular care and clinical research: national heart, lung, and blood institute working group. JACC Basic Transl Sci 2016; 1: 73–86. doi: 10.1016/j.jacbts.2016.01.008
[26] Chocarro-Ruiz B, Fernández-Gavela A, Herranz S, Lechuga LM. Nanophotonic label-free biosensors for environmental monitoring. Curr Opin Biotechnol 2017; 45: 175–183. doi: 10.1016/j.copbio.2017.03.016
[27] Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H et al. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 2014; 4: 6789. doi: 10.1038/srep06789
[28] Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 2014; 3: e122, doi: 10.1038/lsa.2014.3.
[29] Cappi G, Spiga FM, Moncada Y, Ferretti A, Beyeler M et al. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal Chem 2015; 87: 5278–5285. doi: 10.1021/acs.analchem.5b00389
[30] Jahns S, Bräu M, Meyer B-O, Torben K, Gutekunst SB et al. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. Biomed Opt Express 2015; 6: 3724–3736. doi: 10.1364/BOE.6.003724
[31] Liu Y, Liu Q, Chen SM, Cheng F, Wang HQ et al. Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 2015; 5: 12864. doi: 10.1038/srep12864
[32] Gallegos D, Long KD, Yu H, Clark PP, Lin YX et al. Label-free biodetection using a smartphone. Lab Chip 2013; 13: 2124–2132. doi: 10.1039/c3lc40991k
[33] Kwon L, Long KD, Wan Y, Yu H, Cunningham BT. Medical diagnostics with mobile devices: comparison of intrinsic and extrinsic sensing. Biotechnol Adv 2016; 34: 291–304. doi: 10.1016/j.biotechadv.2016.02.010
[34] Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 2014; 14: 3187–3194. doi: 10.1039/C4LC00010B
[35] Nomarski MG. Microinterféromètre différentiel à ondes polarisées. J Phys Rad 1955; 16: S9–S13.
[36] Zernike F. How I discovered phase contrast. Science 1955; 121: 345–349. doi: 10.1126/science.121.3141.345
[37] Wolf E. Solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments. Phys Rev Lett 2009; 103: 075501. doi: 10.1103/PhysRevLett.103.075501
[38] Carney PS, Deutsch B, Govyadinov AA, Hillenbrand R. Phase in nanooptics. ACS Nano 2012; 6: 8–12. doi: 10.1021/nn205008y
[39] Kabashin AV, Nikitin PI. Interferometer based on a surface-plasmon resonance for sensor applications. Quantum Electron 1997; 27: 653. doi: 10.1070/QE1997v027n07ABEH001013
[40] Abelès F. Surface electromagnetic waves ellipsometry. Surf Sci 1976; 56: 237–251. doi: 10.1016/0039-6028(76)90450-7
[41] Huang YH, Ho HP, Kong SK, Kabashin AV. Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Ann Phys 2012; 524: 637–662. doi: 10.1002/andp.201200203
[42] Kabashin AV, Patskovsky S, Grigorenko AN. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express 2009; 17: 21191–21204. doi: 10.1364/OE.17.021191
[43] Junesch J, Sannomiya T. Reflection phase and amplitude determination of short-range ordered plasmonic nanohole arrays. J Phys Chem Lett 2014; 5: 247–252. doi: 10.1021/jz402498n
[44] Svedendahl M, Verre R, Käll M. Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light Sci Appl 2014; 3: e220, doi: 10.1038/lsa.2014.101.
[45] Murphy DB, Davidson MW. Fundamentals of Light Microscopy and Electronic Imaging, 2nd edn. Chichester, UK: Wiley-Blackwell; 2013.
[46] Ortega-Arroyo J, Kukura P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 2012; 14: 15625–15636. doi: 10.1039/c2cp41013c
[47] Liebel M, Hugall JT, van Hulst NF. Ultrasensitive label-free nanosensing and high-speed tracking of single proteins. Nano Lett 2017; 17: 1277–1281. doi: 10.1021/acs.nanolett.6b05040
[48] Terborg RA, Pello J, Mannelli I, Torres JP, Pruneri V. Ultrasensitive interferometric on-chip microscopy of transparent objects. Sci Adv 2016; 2: e1600077. doi: 10.1126/sciadv.1600077
[49] Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998; 391: 667–669. doi: 10.1038/35570
[50] Genet C, Ebbesen TW. Light in tiny holes. Nature 2007; 445: 39–46. doi: 10.1038/nature05350
[51] Cetin AE, Etezadi D, Galarreta BC, Busson MP, Eksioglu Y et al. Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing. ACS Photonics 2015; 2: 1167–1174. doi: 10.1021/acsphotonics.5b00242
[52] Jackman JA, Linardy E, Yoo D, Seo J, Ng WB et al. Plasmonic nanohole sensor for capturing single virus-like particles toward virucidal drug evaluation. Small 2016; 12: 1159–1166. doi: 10.1002/smll.201501914
[53] Wong SL, Ong HC. Phase difference mapping of two-dimensional metallic nanohole arrays. Appl Phys Lett 2012; 100: 233102. doi: 10.1063/1.4723695
[54] Mojarad N, Fan D, Gobrecht J, Ekinci Y. Broadband interference lithography at extreme ultraviolet and soft X-ray wavelengths. Opt Lett 2014; 39: 2286–2289. doi: 10.1364/OL.39.002286