[1] Cuche, E., Marquet, P. & Depeursinge, C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994-7001 (1999). doi: 10.1364/AO.38.006994
[2] Popescu, G. Quantitative Phase Imaging of Cells and Tissues. (McGraw-Hill, New York, 2011).
[3] Shaked, N. T., Rinehart, M. T. & Wax, A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett. 34, 767-769 (2009). doi: 10.1364/OL.34.000767
[4] Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016-1026 (2011). doi: 10.1364/OE.19.001016
[5] Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889-895 (2012). doi: 10.1038/nmeth.2114
[6] Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187
[7] Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express 23, 11394-11403 (2015). doi: 10.1364/OE.23.011394
[8] Wang, Z., Tangella, K., Balla, A. & Popescu, G. Tissue refractive index as marker of disease. J. Biomed. Opt. 16, 116017 (2011). doi: 10.1117/1.3656732
[9] Wang, Z., Ding, H. F. & Popescu, G. Scattering-phase theorem. Opt. Lett. 36, 1215-1217 (2011). doi: 10.1364/OL.36.001215
[10] Liu Y., et al. Detecting cancer metastases on gigapixel pathology images. ArXiv: 1703.02442 (2017).
[11] Litjens G., et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42: 60-88 (2017). doi: 10.1016/j.media.2017.07.005
[12] Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl Acad. Sci. USA 111, 15304-15309 (2014). doi: 10.1073/pnas.1416955111
[13] Giacomelli, M. G. et al. Virtual hematoxylin and eosin transillumination microscopy using epi-fluorescence imaging. PLoS ONE 11, e0159337 (2016). doi: 10.1371/journal.pone.0159337
[14] Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017). doi: 10.1038/s41551-016-0027
[15] Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). doi: 10.1364/OPTICA.4.001437
[16] Rivenson, Y. et al. Deep learning enhanced mobile-phone microscopy. ACS Photon. 5, 2354-2364, https://doi.org/10.1021/acsphotonics.8b00146 (2018).
[17] Wang H., et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy Nat. Methods 16, 103-110 (2019).
[18] Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging through deep learning. Optica 4, 1117-1125 (2017). doi: 10.1364/OPTICA.4.001117
[19] Rivenson, Y., Zhang, Y. B., Günaydin, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, e17141 (2018). doi: 10.1038/lsa.2017.141
[20] Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018).
[21] Jo Y., et al. Quantitative phase imaging and artificial intelligence: a review. arXiv: 1806.03982 (2018).
[22] Kamilov, U. et al. Learning approach to optical tomography. Optica 2, 517-522 (2015). doi: 10.1364/OPTICA.2.000517
[23] Nguyen T., Xue Y. J., Li Y. Z., Tian L., Nehmetallah G. Deep learning approach to Fourier ptychographic microscopy. arXiv: 1805.00334 (2018).
[24] Boyd N., Jonas E., Babcock H. P., Recht B. DeepLoco: fast 3D localization microscopy using neural networks. bioRxiv: 267096, 2018. https://doi.org/10.1101/267096.
[25] Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018). doi: 10.1364/OPTICA.5.000458
[26] Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460-468, https://doi.org/10.1038/nbt.4106 (2018).
[27] Zahavy, T. et al. Deep learning reconstruction of ultrashort pulses. Optica 5, 666-673 (2018). doi: 10.1364/OPTICA.5.000666
[28] Rivenson Y., et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. (in the press).
[29] Goodfellow I. J., et al. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems. (MIT Press: Cambridge, MA, 2014) pp. 2672-2680.
[30] Park, H. S., Rinehart, M. T., Walzer, K. A., Chi, J. T. A. & Wax, A. Automated detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells. PLoS ONE 11, e0163045 (2016). doi: 10.1371/journal.pone.0163045
[31] Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016). doi: 10.1038/srep21471
[32] Roitshtain, D. et al. Quantitative phase microscopy spatial signatures of cancer cells. Cytometry A 91, 482-493 (2017). doi: 10.1002/cyto.a.23100
[33] Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci. Adv. 3, e1700606, https://doi.org/10.1101/109108 (2017).
[34] Javidi, B. et al. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. Opt. Express 26, 13614-13627 (2018). doi: 10.1364/OE.26.013614
[35] Tata, A. et al. Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues. Chem. Sci. 7, 2162-2169 (2016). doi: 10.1039/C5SC03782D
[36] Cree, I. A. et al. Guidance for laboratories performing molecular pathology for cancer patients. J. Clin. Pathol. 67, 923-931 (2014). doi: 10.1136/jclinpath-2014-202404
[37] Patel, P. G. et al. Preparation of formalin-fixed paraffin-embedded tissue cores for both RNA and DNA extraction. J. Vis. Exp. 2016, e54299, https://doi.org/10.3791/54299 (2016).
[38] Ikeda, T., Popescu, G., Dasari, R. R. & Feld, M. S. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165-1167 (2005). doi: 10.1364/OL.30.001165
[39] Shaked, N. T., Zhu, Y. Z., Badie, N., Bursac, N. & Wax, A. Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. J. Biomed. Opt. 15, 030503 (2010). doi: 10.1117/1.3420179
[40] Watanabe, E., Hoshiba, T. & Javidi, B. High-precision microscopic phase imaging without phase unwrapping for cancer cell identification. Opt. Lett. 38, 1319-1321 (2013). doi: 10.1364/OL.38.001319
[41] Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med 6, 267ra175 (2014). doi: 10.1126/scitranslmed.3009850
[42] Bishara, W., Su, T. W., Coskun, A. F. & Ozcan, A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express 18, 11181-11191 (2010). doi: 10.1364/OE.18.011181
[43] Luo, W., Zhang, Y. B., Göröcs, Z., Feizi, A. & Ozcan, A. Propagation phasor approach for holographic image reconstruction. Sci. Rep. 6, 22738 (2016). doi: 10.1038/srep22738
[44] Farsiu, S., Robinson, M. D., Elad, M. & Milanfar, P. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327-1344 (2014).
[45] Zhang, Y. B., Wang, H. D., Wu, Y. C., Tamamitsu, M. & Ozcan, A. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett. 42, 3824-3827 (2017). doi: 10.1364/OL.42.003824
[46] Greenbaum, A. & Ozcan, A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Express 20, 3129-3143 (2012). doi: 10.1364/OE.20.003129
[47] Goodman, J. W. Introduction to Fourier Optics. (Roberts and Company Publishers, Englewood, 2005).
[48] Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679-698 (1986).
[49] Ronneberger O., Fischer P., Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N., Hornegger J., Wells W. M., Frangi A. F., (eds). Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. (Springer, Cham, 2015) pp. 234-241 https://doi.org/10.1007/978-3-319-24574-4_28.