[1] Malamas, E. N. et al. A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21, 171–188 (2003). doi: 10.1016/S0262-8856(02)00152-X
[2] Zhou, R. J. et al. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source. In Proc. SPIE 9424, Metrology, Inspection, and Process Control for Microlithography XXIX 942416 (SPIE, 2015).
[3] Frase, C. G., Gnieser, D. & Bosse, H. Model-based SEM for dimensional metrology tasks in semiconductor and mask industry. J. Phys. D Appl. Phys. 42, 183001 (2009). doi: 10.1088/0022-3727/42/18/183001
[4] Zhang, H. What limits the application of TEM in the semiconductor industry? Thin Solid Films 320, 77–85 (1998). doi: 10.1016/S0040-6090(97)01073-0
[5] den Boef, A. J. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing. Surf. Topography Metrol. Prop. 4, 023001 (2016). doi: 10.1088/2051-672X/4/2/023001
[6] Kim, Y. N. et al. Device based in-chip critical dimension and overlay metrology. Opt. Express 17, 21336–21343 (2009). doi: 10.1364/OE.17.021336
[7] Diebold, A. C., Antonelli, A. & Keller, N. Perspective: optical measurement of feature dimensions and shapes by scatterometry. APL Mater. 6, 058201 (2018). doi: 10.1063/1.5018310
[8] Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Optical Soc. Am. 71, 811–818 (1981). doi: 10.1364/JOSA.71.000811
[9] Liu, S. Y., Chen, X. G. & Zhang, C. W. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Films 584, 176–185 (2015). doi: 10.1016/j.tsf.2015.02.006
[10] Orji, N. G. et al. Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018). doi: 10.1038/s41928-018-0150-9
[11] Bowen, D. K. & Tanner, B. K. X-Ray Metrology in Semiconductor Manufacturing (CRC Press, 2006).
[12] de Groot, P. et al. Metrology of optically-unresolved features using interferometric surface profiling and RCWA modeling. Opt. Express 16, 3970–3975 (2008). doi: 10.1364/OE.16.003970
[13] Scholze, F. et al. Comparison of CD measurements of an EUV photomask by EUV scatterometry and CD-AFM. In Proc. SPIE 8880, Photomask Technology 2013 888000 (SPIE, 2013).
[14] Begum, N. et al. Structural characterization of GaAs and InAs nanowires by means of Raman spectroscopy. J. Appl. Phys. 104, 104311 (2008). doi: 10.1063/1.3026726
[15] Roy, S. et al. Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem. J. Opt. 15, 075707 (2013). doi: 10.1088/2040-8978/15/7/075707
[16] Oliver, R. A. Advances in AFM for the electrical characterization of semiconductors. Rep. Prog. Phys. 71, 076501 (2008). doi: 10.1088/0034-4885/71/7/076501
[17] Tompkins, H. G. & McGahan, W. A. Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).
[18] Aspnes, D. E. Spectroscopic ellipsometry—past, present, and future. Thin Solid Films 571, 334–344 (2014). doi: 10.1016/j.tsf.2014.03.056
[19] Lin, C. H. et al. Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis. Microelectron. Eng. 83, 1798–1804 (2006). doi: 10.1016/j.mee.2006.01.135
[20] Jellison, G. E. Jr. et al. Characterization of thin-film amorphous semiconductors using spectroscopic ellipsometry. Thin Solid Films 377-378, 68–73 (2000). doi: 10.1016/S0040-6090(00)01384-5
[21] Fried, M. et al. Nondestructive determination of damage depth profiles in ion-implanted semiconductors by spectroscopic ellipsometry using different optical models. J. Appl. Phys. 71, 2835–2843 (1992). doi: 10.1063/1.351014
[22] Willig, K. I. et al. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007). doi: 10.1038/nmeth1108
[23] Donolato, C. An analytical model of SEM and STEM charge collection images of dislocations in thin semiconductor layers: I. Minority carrier generation, diffusion, and collection. Phys. Status Solidi A 65, 649–658 (1981). doi: 10.1002/pssa.2210650231
[24] Rust, M. J., Bates, M. & Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006). doi: 10.1038/nmeth929
[25] Wang, Z. B. et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2, 218 (2011). doi: 10.1038/ncomms1211
[26] Li, L. et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light. Sci. Appl. 2, e104 (2013). doi: 10.1038/lsa.2013.60
[27] Wang, B. K. et al. Super-resolution optical microscope: principle, instrumentation, and application. Front. Inf. Technol. Electron. Eng. 20, 608–630 (2019). doi: 10.1631/FITEE.1800449
[28] Lee, J. Y. et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 460, 498–501 (2009). doi: 10.1038/nature08173
[29] Chen, L. W. et al. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl. Phys. Rev. 6, 021304 (2019). doi: 10.1063/1.5082215
[30] Maslov, A. V. & Astratov, V. N. Resolution and reciprocity in microspherical nanoscopy: point-spread function versus photonic nanojets. Phys. Rev. Appl. 11, 064004 (2019). doi: 10.1103/PhysRevApplied.11.064004
[31] Perrin, S. et al. Unconventional magnification behaviour in microsphere-assisted microscopy. Opt. Laser Technol. 114, 40–43 (2019). doi: 10.1016/j.optlastec.2019.01.030
[32] Heydarian, R. & Simovski, C. R. The role of normal polarization in far-field subwavelength imaging by a dielectric microsphere or microcylinder. J. Opt. 22, 075002 (2020). doi: 10.1088/2040-8986/ab92b8
[33] Yang, H. et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 16, 4862–4870 (2016). doi: 10.1021/acs.nanolett.6b01255
[34] Wang, Z. B. & Luk'yanchuk, B. in Label-Free Super-Resolution Microscopy (ed. Astratov, V. ) 371–406 (Springer, 2019).
[35] Sui, G. R. et al. Optimization theory and application of nano-microscopic properties of dielectric microspheres. arXiv Prepr. 1909, 09413 (2019).
[36] Gu, G. Q. et al. Numerical investigation of photonic nanojets generated from D-shaped dielectric microfibers. In Proc. SPIE 11186, Advanced Optical Imaging Technologies Ⅱ 111861H (SPIE, 2019).
[37] Wen, Y. D. et al. Photonic nanojet sub-diffraction nano-fabrication with in situ super-resolution imaging. IEEE Trans. Nanotechnol. 18, 226–233 (2019). doi: 10.1109/TNANO.2019.2896220
[38] Chen, Z. G., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214–1220 (2004). doi: 10.1364/OPEX.12.001214
[39] Luk'yanchuk, B. S. et al. Refractive index less than two: photonic nanojets yesterday, today and tomorrow[Invited]. Optical Mater. Express 7, 1820–1847 (2017). doi: 10.1364/OME.7.001820
[40] Lecler, S. et al. Photonic jet lens. Sci. Rep. 9, 4725 (2019). doi: 10.1038/s41598-019-41193-2
[41] Geints, Y. E., Zemlyanov, A. A. & Panina, E. K. Photonic jets from resonantly excited transparent dielectric microspheres. J. Optical Soc. Am. B 29, 758–762 (2012). doi: 10.1364/JOSAB.29.000758
[42] Yannopapas, V. Photonic nanojets as three-dimensional optical atom traps: a theoretical study. Opt. Commun. 285, 2952–2955 (2012). doi: 10.1016/j.optcom.2012.02.014
[43] Perrin, S. et al. Illumination conditions in microsphere-assisted microscopy. J. Microsc. 274, 69–75 (2019). doi: 10.1111/jmi.12781
[44] Hüser, L. & Lehmann, P. Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements. Appl. Opt. 59, 1695–1702 (2020). doi: 10.1364/AO.379222
[45] Kassamakov, I. et al. 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Sci. Rep. 7, 3683 (2017). doi: 10.1038/s41598-017-03830-6
[46] Perrin, S. et al. Compensated microsphere-assisted interference microscopy. Phys. Rev. Appl. 13, 014068 (2020). doi: 10.1103/PhysRevApplied.13.014068
[47] Zhang, X. A., Chen, I. T. & Chang, C. H. Recent progress in near-field nanolithography using light interactions with colloidal particles: from nanospheres to three-dimensional nanostructures. Nanotechnology 30, 352002 (2019). doi: 10.1088/1361-6528/ab2282
[48] Yu, L. Y., Cyue, Z. R. & Su, G. D. J. Three-stage full-wave simulation architecture for in-depth analysis of microspheres in microscopy. Opt. Express 28, 8862–8877 (2020). doi: 10.1364/OE.381526
[49] Liu, C. & Ye, A. P. Microsphere assisted optical super-resolution imaging with narrowband illumination. Opt. Commun. 485, 126658 (2021). doi: 10.1016/j.optcom.2020.126658
[50] Krivitsky, L. A. et al. Locomotion of microspheres for super-resolution imaging. Sci. Rep. 3, 3501 (2013). doi: 10.1038/srep03501