[1] Aboulkhair, N. T. et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science 106, 100578 (2019).
[2] Deng, Q. W. et al. One droplet toward efficient alcohol detection using femtosecond laser textured micro/nanostructured surface with superwettability. Small Methods 7, 2300290 (2023). doi: 10.1002/smtd.202300290
[3] Huang, Q. Q. et al. Femtosecond laser-scribed superhydrophilic/ superhydrophobic self-splitting patterns for one droplet multi-detection. Nanoscale 15, 11247-11254 (2023). doi: 10.1039/D3NR01395B
[4] Wang, L. X. et al. Wetting ridge-guided directional water self-transport. Advanced Science 9, 2204891 (2022). doi: 10.1002/advs.202204891
[5] Bayoumy, D. et al. The latest development of Sc-strengthened aluminum alloys by laser powder bed fusion. Journal of Materials Science & Technology 149, 1-17 (2023).
[6] Tang, H. P. et al. Effects of direct aging treatment on microstructure, mechanical properties and residual stress of selective laser melted AlSi10Mg alloy. Journal of Materials Science & Technology 139, 198-209 (2023).
[7] Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365-369 (2017).
[8] Sun, T. T. et al. The role of in-situ nano-TiB2 particles in improving the printability of noncastable 2024Al alloy. Materials Research Letters 10, 656-665 (2022). doi: 10.1080/21663831.2022.2080514
[9] Wang, K. D. et al. Effect of adding methods of nucleating agent on microstructure and mechanical properties of Zr modified Al-Cu-Mg alloys prepared by selective laser melting. Acta Metallurgica Sinica 58, 1281-1291 (2022).
[10] Shi, Y. J. et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting. Materials Science and Engineering:A 732, 41-52 (2018). doi: 10.1016/j.msea.2018.06.049
[11] Cordova, L. et al. Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF). Additive Manufacturing 36, 101625 (2020). doi: 10.1016/j.addma.2020.101625
[12] Jia, Q. B. et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms. Acta Materialia 171, 108-118 (2019). doi: 10.1016/j.actamat.2019.04.014
[13] Jia, Q. B. et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting. Acta Materialia 193, 239-251 (2020). doi: 10.1016/j.actamat.2020.04.015
[14] Zhang, J. L. et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting. Additive Manufacturing 38, 101829 (2021). doi: 10.1016/j.addma.2020.101829
[15] Bi, J. et al. An additively manufactured Al-14. 1Mg-0. 47Si-0. 31Sc-0. 17Zr alloy with high specific strength,good thermal stability and excellent corrosion resistance. Journal of Materials Science & Technology 67, 23-35 (2021).
[16] Li, R. D. et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms. Acta Materialia 193, 83-98 (2020). doi: 10.1016/j.actamat.2020.03.060
[17] Zhao, J. H. et al. Selective laser melting Al-3. 4Mg-0. 5Mn-0. 8Sc-0. 4Zr alloys:From melting pool to the microstructure and mechanical properties. Materials Science and Engineering:A 825, 141889 (2021).
[18] Zhou, S. Y. et al. Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Additive Manufacturing 36, 101458 (2020). doi: 10.1016/j.addma.2020.101458
[19] Wang, J. H. et al. A crack-free and high-strength Al-Cu-Mg-Mn-Zr alloy fabricated by laser powder bed fusion. Materials Science and Engineering:A 854, 143731 (2022). doi: 10.1016/j.msea.2022.143731
[20] Li, L. B. et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu (Al7075) alloy by Si and Zr microalloying. Materials Science and Engineering:A 787, 139492 (2020). doi: 10.1016/j.msea.2020.139492
[21] Michi, R. A. et al. Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. International Materials Reviews 67, 298-345 (2022). doi: 10.1080/09506608.2021.1951580
[22] Nasab, M. H. et al. Effect of surface and subsurface defects on fatigue behavior of AlSi10Mg alloy processed by laser powder bed fusion (L-PBF). Metals 9, 1063 (2019). doi: 10.3390/met9101063
[23] Defanti, S. & Bassoli, E. Repeatability of the fatigue performance of additively manufactured A357. 0 under different thermal treatment conditions. Materials Science and Engineering:A 805, 140594 (2021).
[24] Schimbäck, D. et al. Deformation and fatigue behaviour of additively manufactured Scalmalloy® with bimodal microstructure. International Journal of Fatigue 172, 107592 (2023). doi: 10.1016/j.ijfatigue.2023.107592
[25] Shen, X. F. et al. Effect of heat treatments on the microstructure and mechanical properties of Al-Mg-Sc-Zr alloy fabricated by selective laser melting. Optics & Laser Technology 143, 107312 (2021).
[26] Croteau, J. R. et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting. Acta Materialia 153, 35-44 (2018). doi: 10.1016/j.actamat.2018.04.053
[27] Gypen, L. A. & Deruyttere, A. Multi-component solid solution hardening - Part 1 proposed model. Journal of Materials Science 12, 1028-1033 (1977). doi: 10.1007/BF00540987
[28] Fuller, C. B., Seidman, D. N. & Dunand, D. C. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Materialia 51, 4803-4814 (2003). doi: 10.1016/S1359-6454(03)00320-3
[29] Bayoumy, D. et al. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion. Journal of Materials Science & Technology 103, 121-133 (2022).
[30] Rao, J. H. et al. Improving fatigue performances of selective laser melted Al-7Si-0. 6Mg alloy via defects control. International Journal of Fatigue 129, 105215 (2019).
[31] Pang, J. C. et al. General relation between tensile strength and fatigue strength of metallic materials. Materials Science and Engineering:A 564, 331-341 (2013). doi: 10.1016/j.msea.2012.11.103
[32] Wu, Z. K. et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. International Journal of Fatigue 151, 106317 (2021). doi: 10.1016/j.ijfatigue.2021.106317
[33] Aboulkhair, N. T. et al. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Materials & Design 104, 174-182 (2016).
[34] Qin, Z. H. et al. Anisotropic high cycle fatigue property of Sc and Zr-modified Al-Mg alloy fabricated by laser powder bed fusion. Additive Manufacturing 49, 102514 (2022). doi: 10.1016/j.addma.2021.102514
[35] Boniotti, L. et al. Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. International Journal of Fatigue 128, 105181 (2019). doi: 10.1016/j.ijfatigue.2019.06.041
[36] Schimbäck, D. et al. An improved process scan strategy to obtain high-performance fatigue properties for Scalmalloy®. Materials & Design 224, 111410 (2022).
[37] Yan, Q., Song, B. & Shi, Y. S. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. Journal of Materials Science & Technology 41, 199-208 (2020).
[38] Baek, M. S. et al. Influence of heat treatment on the high-cycle fatigue properties and fatigue damage mechanism of selective laser melted AlSi10Mg alloy. Materials Science and Engineering:A 819, 141486 (2021). doi: 10.1016/j.msea.2021.141486
[39] Beretta, S. & Romano, S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue 94, 178-191 (2017). doi: 10.1016/j.ijfatigue.2016.06.020
[40] El Haddad, M. H., Topper, T. H. & Smith, K. N. Prediction of non propagating cracks. Engineering Fracture Mechanics 11, 573-584 (1979). doi: 10.1016/0013-7944(79)90081-X
[41] Dowling, N. E., Calhoun, C. A. & Arcari, A. Mean stress effects in stress-life fatigue and the Walker equation. Fatigue & Fracture of Engineering Materials & Structures 32, 163-179 (2009).
[42] Cao, S. et al. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment, microstructure, and property. Light:Advanced Manufacturing 2, 313-332 (2021).