[1] Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures. 328 (New York: John Wiley, 1999).
[2] Schimpf, C., Manna, S., da Silva, S. F. C., Aigner, M. & Rastelli, A. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K. Advanced Photonics 3, 065001-1-065001-7 (2021).
[3] Huber, D. et al. Single-particle-picture breakdown in laterally weakly confining GaAs quantum dots. Phys. Rev. B 100, 235425 (2019). doi: 10.1103/PhysRevB.100.235425
[4] Huang, H. et al. Electric field induced tuning of electronic correlation in weakly confining quantum dots. Phys. Rev. B 104, 165401 (2021). doi: 10.1103/PhysRevB.104.165401
[5] Csontosová, D. & Klenovský, P. Theory of magneto-optical properties of neutral and charged excitons in GaAs/AlGaAs quantum dots. Phys. Rev. B 102, 125412 (2020). doi: 10.1103/PhysRevB.102.125412
[6] Grundmann, M., Stier, O. & Bimberg, D. InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys. Rev. B 52, 11969-11981 (1995). doi: 10.1103/PhysRevB.52.11969
[7] Kirstaedter, N. et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416-1417 (1994). doi: 10.1049/el:19940939
[8] Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282-2285 (2000). doi: 10.1126/science.290.5500.2282
[9] Mikhrin, S. S. et al. 0.94 μm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semiconductor Sci. Technol. 15, 1061-1064 (2000). doi: 10.1088/0268-1242/15/11/309
[10] Owschimikow, N. et al. Submonolayer quantum dots. Semiconductor Nanophotonics: Mater., Models, Devices 194, 13 (2020).
[11] Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photonics 4, 511-517 (2010). doi: 10.1038/nphoton.2010.167
[12] Suris, R. A. Prospects for quantum dot structures applications in electronics and optoelectronics. in Future Trends in Microelectronics (eds Luryi, S., Xu, J. & Zaslavsky, A. ) pp. 197-208 (Dordrecht: Springer, 1996), https://doi.org/10.1007/978-94-009-1746-0_17.
[13] Jiang, H. T. & Singh, J. Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: an eight-band study. Phys. Rev. B 56, 4696-4701 (1997). doi: 10.1103/PhysRevB.56.4696
[14] Schliwa, A., Hönig G., & Bimberg D. Electronic properties of Ⅲ–Ⅴ quantum dots. Multi-Band Effective Mass Approximations. Springer, Cham, 57-85 (2014).
[15] Stier, O., Grundmann, M. & Bimberg, D. Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Phys. Rev. B 59, 5688-5701 (1999). doi: 10.1103/PhysRevB.59.5688
[16] Schliwa, A., Winkelnkemper, M. & Bimberg, D. Few-particle energies versus geometry and composition of InxGa1-xAs/GaAs self-organized quantum dots. Phys. Rev. B 79, 075443 (2009). doi: 10.1103/PhysRevB.79.075443
[17] Mlinar, V. & Zunger, A. Effect of atomic-scale randomness on the optical polarization of semiconductor quantum dots. Phys. Rev. B 79, 115416 (2009). doi: 10.1103/PhysRevB.79.115416
[18] Hönig, G. et al. Manifestation of unconventional biexciton states in quantum dots. Nat. Commun. 5, 5721 (2014). doi: 10.1038/ncomms6721
[19] Ambacher, O. et al. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures. Phys. Status Solidi (c) 6, 1878-1907 (2003).
[20] Williamson, A. J., Wang, L. W. & Zunger, A. Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B 62, 12963 (2000). doi: 10.1103/PhysRevB.62.12963
[21] Stillinger, F. H. & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985). doi: 10.1103/PhysRevB.31.5262
[22] Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989). doi: 10.1103/PhysRevB.39.5566
[23] Cady, W. G. Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. (McGraw-Hill, 1946).
[24] Bester, G. et al. Importance of second-order piezoelectric effects in zinc-blende semiconductors. Phys. Rev. Lett. 96, 187602 (2006). doi: 10.1103/PhysRevLett.96.187602
[25] Bester, G. & Zunger, A. Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005). doi: 10.1103/PhysRevB.71.045318
[26] Bester, G. et al. Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 74, 081305 (2006). doi: 10.1103/PhysRevB.74.081305
[27] Schliwa, A., Winkelnkemper, M. & Bimberg, D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys. Rev. B 76, 205324 (2007). doi: 10.1103/PhysRevB.76.205324
[28] Aberl, J. et al. Inversion of the exciton built-in dipole moment in In(Ga)As quantum dots via nonlinear piezoelectric effect. Phys. Rev. B 96, 045414-1-045414-6 (2017).
[29] Klenovský, P. et al. Effect of second-order piezoelectricity on the excitonic structure of stress-tuned In(Ga)As/GaAs quantum dots. Phys. Rev. B 97, 245314 (2018). doi: 10.1103/PhysRevB.97.245314
[30] Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249-261 (1957). doi: 10.1016/0022-3697(57)90013-6
[31] Pollak, F. H. Effects of homogeneous strain on the electronic and vibrational levels in semiconductors. Semiconductors Semimet. 32, 17-53 (1990).
[32] Enders, P. et al. k·p theory of energy bands, wave functions, and optical selection rules in strained tetrahedral semiconductors. Phys. Rev. B 51, 16695-16704 (1995). doi: 10.1103/PhysRevB.51.16695
[33] Gershoni, D., Henry, C. H. & Baraff, G. A. Calculating the optical properties of multidimensional heterostructures: application to the modeling of quaternary quantum well lasers. IEEE J. Quantum Electron. 29, 2433-2450 (1993). doi: 10.1109/3.247701
[34] Stier, O. & Bimberg, D. Modeling of strained quantum wires using eight-band k·p theory. Phys. Rev. B 55, 7726-7732 (1997).
[35] Pryor, C. Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 57, 7190-7195 (1998). doi: 10.1103/PhysRevB.57.7190
[36] Majewski, J. A. et al. Advances in the theory of electronic structure of semiconductors. Phys. Status Solidi (c) 1, 2003-2027 (2004). doi: 10.1002/pssc.200404761
[37] Zibold, T. Semiconductor Based Quantum Information Devices: Theory and Simulations. PhD thesis, Technische Universitat München, München, 2007.
[38] Bardeen, J. & Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. J. Arch. 80, 72-80 (1950). doi: 10.1103/PhysRev.80.72
[39] Herring, C. & Vogt, E. Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944-961 (1956). doi: 10.1103/PhysRev.101.944
[40] Birner, S. et al. nextnano: general purpose 3-D simulations. IEEE Trans. Electron Devices 54, 2137-2142 (2007).
[41] Trellakis, A. et al. The 3D nanometer device project nextnano: concepts, methods, results. J. Comput. Electron. 5, 285-289 (2006).
[42] Vogl, P., Hjalmarson, H. P. & Dow, J. D. A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365-378 (1983). doi: 10.1016/0022-3697(83)90064-1
[43] Jancu, J. M. et al. Empirical spds* tight-binding calculation for cubic semiconductors: general method and material parameters. Phys. Rev. B 57, 6493-6507 (1998).
[44] Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45, 255-282 (1950). doi: 10.6028/jres.045.026
[45] LAMMPS molecular dynamics simulator. https://www.lammps.org/ (2021).
[46] Ichimura, M. Stillinger-Weber potentials for Ⅲ–Ⅴ compound semiconductors and their application to the critical thickness calculation for InAs/GaAs. Phys. Status Solidi (a) 153, 431-437 (1996). doi: 10.1002/pssa.2211530217
[47] Dalcin, L. D. et al. Parallel distributed computing using Python. Adv. Water Resour. 34, 1124-1139 (2011). doi: 10.1016/j.advwatres.2011.04.013
[48] Hernández, V. et al. SLEPc Users Manual Scalable Library for Eigenvalue Problem Computations. (Universidad Politecnica de Valencia, 2006).
[49] Goldmann, E. From Structure to Spectra: Tight-Binding Theory of InGaAs Quantum Dots. PhD thesis, Universität Bremen, Bremen, (2014).
[50] Carmesin, C. Tight-Binding Based Investigation of Semiconductor Quantum Dots and Molybdenum Disulfide Nanobubbles: From Atomic Structure to Optical Spectra. PhD thesis, Universität Bremen, Bremen, (2018).
[51] Schulz, S. Electronic and Optical Properties of Quantum Dots: a Tight-Binding Approach. PhD thesis, Universität Bremen, Bremen, (2007).
[52] Boykin, T. B. et al. Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B 66, 125207 (2002). doi: 10.1103/PhysRevB.66.125207
[53] Zieliński, M. Including strain in atomistic tight-binding Hamiltonians: an application to self-assembled InAs/GaAs and InAs/InP quantum dots. Phys. Rev. B 86, 115424 (2012). doi: 10.1103/PhysRevB.86.115424
[54] Boykin, T. B. Tunneling calculations for systems with singular coupling matrices: results for a simple model. Phys. Rev. B 54, 7670-7673 (1996). doi: 10.1103/PhysRevB.54.7670
[55] Boykin, T. B. et al. Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parametrization. Phys. Rev. B 81, 125202 (2010). doi: 10.1103/PhysRevB.81.125202
[56] Tan, Y. H. et al. Transferable tight-binding model for strained group Ⅳ and Ⅲ–Ⅴ materials and heterostructures. Phys. Rev. B 94, 045311 (2016). doi: 10.1103/PhysRevB.94.045311
[57] Mittelstädt, A. et al. Efficient electronic structure calculations for extended systems of coupled quantum dots using a linear combination of quantum dot orbitals method. Phys. Rev. B 103, 115302 (2021). doi: 10.1103/PhysRevB.103.115302
[58] Quandt, D. et al. Strong charge-carrier localization in InAs/GaAs submonolayer stacks prepared by Sb-assisted metalorganic vapor-phase epitaxy. Phys. Rev. B 91, 235418 (2015). doi: 10.1103/PhysRevB.91.235418
[59] Huang, K. & Rhys, A. Theory of light absorption and non-radiative transitions in F-centres. in Selected Papers of Kun Huang (ed. Zhe, B. F. ) 74-92 (Singapore: World Scientific, 2000), https://doi.org/10.1142/9789812793720_0007.
[60] Hatami, F. et al. InP quantum dots embedded in GaP: optical properties and carrier dynamics. Phys. Rev. B 67, 085306 (2003). doi: 10.1103/PhysRevB.67.085306
[61] Leon, R. et al. Self-forming InAs/GaP quantum dots by direct island growth. Appl. Phys. Lett. 72, 1356-1358 (1998). doi: 10.1063/1.121070
[62] Guo, W. M. et al. First step to Si photonics: synthesis of quantum dot light-emitters on GaP substrate by MBE. Phys. Status Solidi (c) 6, 2207-2211 (2009). doi: 10.1002/pssc.200881722
[63] Shamirzaev, T. S. et al. High quality relaxed GaAs quantum dots in GaP matrix. Appl. Phys. Lett. 97, 023108 (2010). doi: 10.1063/1.3464561
[64] Umeno, K. et al. Formation of self-assembled InGaAsN/GaP quantum dots by molecular-beam epitaxy. Phys. E: Low. Dimens. Syst. Nanostruct. 42, 2772-2776 (2010). doi: 10.1016/j.physe.2009.11.014
[65] Fuchi, S. et al. Composition dependence of energy structure and lattice structure in InGaAs/GaP. Phys. E: Low. Dimens. Syst. Nanostruct. 21, 36-44 (2004). doi: 10.1016/j.physe.2003.02.001
[66] Thanh, T. N. et al. Room temperature photoluminescence of high density (In, Ga)As/GaP quantum dots. Appl. Phys. Lett. 99, 143123 (2011). doi: 10.1063/1.3646911
[67] Rivoire, K. et al. Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities. Phys. Rev. B 85, 045319 (2012). doi: 10.1103/PhysRevB.85.045319
[68] Fukami, F. et al. Analysis of quantum levels for self-assembled InGaAsN/GaP quantum dots. Phys. Status Solidi (c) 8, 322-324 (2011). doi: 10.1002/pssc.201000500
[69] Robert, C. et al. Electronic, optical, and structural properties of (In, Ga)As/GaP quantum dots. Phys. Rev. B 86, 205316 (2012). doi: 10.1103/PhysRevB.86.205316
[70] Robert, C. et al. Strain-induced fundamental optical transition in (In, Ga)As/GaP quantum dots. Appl. Phys. Lett. 104, 011908 (2014). doi: 10.1063/1.4861471
[71] Robert, C. et al. Electronic wave functions and optical transitions in (In, Ga)As/GaP quantum dots. Phys. Rev. B 94, 075445 (2016). doi: 10.1103/PhysRevB.94.075445
[72] Sala, E. M. et al. Growth and structure of In0.5Ga0.5Sb quantum dots on GaP(001). Appl. Phys. Lett. 109, 102102 (2016). doi: 10.1063/1.4962273
[73] Sala, E. M. et al. MOVPE-growth of InGaSb/AlP/GaP(001) quantum dots for nanoscale memory applications. Phys. Status Solidi (b) 255, 1800182 (2018). doi: 10.1002/pssb.201800182
[74] Klenovský, P., Schliwa, A. & Bimberg, D. Electronic states of (InGa)(AsSb)/GaAs/GaP quantum dots. Phys. Rev. B 100, 115424 (2019). doi: 10.1103/PhysRevB.100.115424
[75] Steindl, P., Sala, E. M., Alén, B., Bimberg, D. & Klenovský, P. On the importance of antimony for temporal evolution of emission from self-assembled (InGa) (AsSb)/GaAs quantum dots on GaP(001). N. J. Phys. 23, 103029 (2021). doi: 10.1088/1367-2630/ac2bd6
[76] Klenovský, P. et al. Electronic structure of InAs quantum dots with GaAsSb strain reducing layer: localization of holes and its effect on the optical properties. Appl. Phys. Lett. 97, 203107 (2010). doi: 10.1063/1.3517446
[77] Křápek, V., Klenovský, P. & Šikola, T. Type-Ⅰ and type-Ⅱ confinement in quantum dots: excitonic fine structure. Acta Phys. Polonica A 129, A-66-A-69 (2016). doi: 10.12693/APhysPolA.129.A-66
[78] Klenovský, P., Křápek, V. & Humlíček, J. Type-Ⅱ InAs/GaAsSb/GaAs quantum dots as artificial quantum dot molecules. Acta Phys. Polonica A 129, A-62-A-65 (2016). doi: 10.12693/APhysPolA.129.A-62
[79] Křápek, V., Klenovský, P. & Šikola, T. Excitonic fine structure splitting in type-Ⅱ quantum dots. Phys. Rev. B 92, 195430 (2015). doi: 10.1103/PhysRevB.92.195430
[80] Humliček, J., Klenovský, P. & Munzar, D. Electronic structure of InAs/GaAs/GaAsSb quantum dots. In Proc. 3rd International Conference on NANOCON. Slezska: Tanger Ltd., (2011).
[81] Klenovský, P. et al. Modelling of electronic states in InAs/GaAs quantum dots with GaAsSb strain reducing overlayer. J. Phys. Conf. Ser. 245, 012086 (2010). doi: 10.1088/1742-6596/245/1/012086
[82] Klenovský, P., Steindl, P. & Geffroy, D. Excitonic structure and pumping power dependent emission blue-shift of type-Ⅱ quantum dots. Sci. Rep. 7, 45568 (2017). doi: 10.1038/srep45568
[83] Rautert, J. et al. Optical orientation and alignment of excitons in direct and indirect band gap (In, Al)As/AlAs quantum dots with type-Ⅰ band alignment. Phys. Rev. B 99, 195411 (2019). doi: 10.1103/PhysRevB.99.195411
[84] Gajjela, R. S. R. et al. Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski-Krastanov quantum dots. Light. Sci. Appl. 10, 125 (2021). doi: 10.1038/s41377-021-00564-z
[85] Steindl, P. et al. Optical response of (InGa)(AsSb)/GaAs quantum dots embedded in a GaP matrix. Phys. Rev. B 100, 195407 (2019). doi: 10.1103/PhysRevB.100.195407
[86] Kazarinov, R. F. & Suris, R. A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. —Semiconductors 5, 707-709 (1971).
[87] Bosco, L. et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl. Phys. Lett. 115, 010601 (2019). doi: 10.1063/1.5110305
[88] Khalatpour, A. et al. High-power portable terahertz laser systems. Nat. Photonics 15, 16-20 (2021). doi: 10.1038/s41566-020-00707-5
[89] Williams, B. S. Terahertz quantum-cascade lasers. Nat. Photonics 1, 517-525 (2007). doi: 10.1038/nphoton.2007.166
[90] Ferreira, R. & Bastard, G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures. Phys. Rev. B 40, 1074-1086 (1989). doi: 10.1103/PhysRevB.40.1074
[91] Kumar, S. Recent progress in terahertz quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 17, 38-47 (2011). doi: 10.1109/JSTQE.2010.2049735
[92] Faist, J. et al. Quantum cascade laser. Science 264, 553-556 (1994). doi: 10.1126/science.264.5158.553
[93] Faist, J. Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007). doi: 10.1063/1.2747190
[94] Yu, J. S. et al. Temperature dependent characteristics of λ ~ 3.8 μm room-temperature continuous-wave quantum-cascade lasers. Appl. Phys. Lett. 88, 251118 (2006). doi: 10.1063/1.2216024
[95] Dmitriev, I. A. & Suris, R. A. Quantum cascade lasers based on quantum dot superlattice. Phys. Status Solidi (a) 202, 987-991 (2005). doi: 10.1002/pssa.200460714
[96] Li, X. Q., Nakayama, H. & Arakawa, Y. Phonon bottleneck in quantum dots: role of lifetime of the confined optical phonons. Phys. Rev. B 59, 5069-5073 (1999). doi: 10.1103/PhysRevB.59.5069
[97] Zibik, E. A. et al. Intraband relaxation via polaron decay in InAs self-assembled quantum dots. Phys. Rev. B 70, 161305 (2004). doi: 10.1103/PhysRevB.70.161305
[98] Zibik, E. A. et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803-807 (2009). doi: 10.1038/nmat2511
[99] Wingreen, N. S. & Stafford, C. A. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J. Quantum Electron. 33, 1170-1173 (1997). doi: 10.1109/3.594880
[100] Hsu, C. F. et al. Intersubband quantum-box semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 6, 491-503 (2000). doi: 10.1109/2944.865104
[101] Vukmirovic, N. et al. Electron transport and terahertz gain in quantum-dot cascades. IEEE Photonics Technol. Lett. 20, 129-131 (2008). doi: 10.1109/LPT.2007.912533
[102] Blank, H. et al. Quantification of the In-distribution in embedded InGaAs quantum dots by transmission electron microscopy. Cryst. Res. Technol. 44, 1083-1088 (2009). doi: 10.1002/crat.200900513
[103] Litvinov, D. et al. Influence of InGaAs cap layers with different In concentration on the properties of InGaAs quantum dots. J. Appl. Phys. 103, 083532 (2008). doi: 10.1063/1.2903143
[104] Franckié, M. et al. Two-well quantum cascade laser optimization by non-equilibrium Green's function modelling. Appl. Phys. Lett. 112, 021104 (2018). doi: 10.1063/1.5004640
[105] Kumar, S. et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of ħω/kB. Nat. Phys. 7, 166-171 (2011). doi: 10.1038/nphys1846
[106] Mittelstädt, A. et al. Terahertz lasing at room temperature: a numerical study of a vertical-emitting quantum cascade laser based on a quantum dot superlattice. Phys. Rev. B 103, 115301 (2021). doi: 10.1103/PhysRevB.103.115301
[107] Ulbrich, N. et al. Intersubband staircase laser. Appl. Phys. Lett. 80, 4312-4314 (2002). doi: 10.1063/1.1484245
[108] Kumar, S. et al. Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation. Appl. Phys. Lett. 95, 141110 (2009). doi: 10.1063/1.3243459
[109] Scalari, G. et al. Broadband THz lasing from a photon-phonon quantum cascade structure. Opt. Express 18, 8043-8052 (2010). doi: 10.1364/OE.18.008043