[1] IJzerman-Korevaar, M. et al. Prevalence of symptoms in glioma patients throughout the disease trajectory: a systematic review. Journal of Neuro-Oncology 140, 485-496 (2018). doi: 10.1007/s11060-018-03015-9
[2] Rasmussen, B. K. et al. Epidemiology of glioma: clinical characteristics, symptoms, and predictors of glioma patients grade I–IV in the the Danish Neuro-Oncology registry. Journal of Neuro-Oncology 135, 571-579 (2017). doi: 10.1007/s11060-017-2607-5
[3] Schwartzbaum, J. A. et al. Epidemiology and molecular pathology of glioma. Nature Clinical Practice Neurology 2, 494-503 (2006). doi: 10.1038/ncpneuro0289
[4] Krieg, S. M. et al. Surgery of highly eloquent gliomas primarily assessed as non-resectable: risks and benefits in a cohort study. BMC Cancer 13, 51 (2013). doi: 10.1186/1471-2407-13-51
[5] You, H. & Qiao, H. Intraoperative neuromonitoring during resection of gliomas involving eloquent areas. Frontiers in Neurology 12, 658680 (2021). doi: 10.3389/fneur.2021.658680
[6] Tihan, T. & Erşen, A. Pathology of malignant gliomas: challenges of everyday practice and the WHO 2007. Turk Patoloji Dergisi 24, 194-212 (2008).
[7] Haider, A. S. et al. Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort. Neuro-Oncology 22, 450-456 (2020). doi: 10.1093/neuonc/noz233
[8] Dunbar, E. & Yachnis, A. T. Glioma diagnosis: immunohistochemistry and beyond. Advances in Anatomic Pathology 17, 187-201 (2010). doi: 10.1097/PAP.0b013e3181d98cd9
[9] Popova, S. N. et al. Subtyping of gliomas of various WHO grades by the application of immunohistochemistry. Histopathology 64, 365-379 (2014). doi: 10.1111/his.12252
[10] Patel, V. & Alexandrescu, S. Immunohistochemical surrogates for molecular alterations for the classification and grading of gliomas. Seminars in Diagnostic Pathology 39, 78-83 (2022). doi: 10.1053/j.semdp.2021.11.003
[11] Jackson, R. J. et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-Oncology 3, 193-200 (2001). doi: 10.1093/neuonc/3.3.193
[12] Chang, J. T. et al. Division of focal plane polarimeter-based 3×4 mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues. Journal of Biomedical Optics 21, 056002 (2016). doi: 10.1117/1.JBO.21.5.056002
[13] Golaraei, A. et al. Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double stokes-mueller polarimetric microscopy. Biomedical Optics Express 7, 4054-4068 (2016). doi: 10.1364/BOE.7.004054
[14] Hou, A. L. et al. Polarimetry feature parameter deriving from mueller matrix imaging and auto-diagnostic significance to distinguish HSIL and CSCC. Journal of Innovative Optical Health Sciences 15, 2142008 (2022). doi: 10.1142/S1793545821420086
[15] Abbasian, V. & Moradi, A. R. Microsphere-assisted super-resolved Mueller matrix microscopy. Optics Letters 45, 4336-4339 (2020). doi: 10.1364/OL.395735
[16] He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light: Science & Applications 10, 194 (2021).
[17] Lee, T. K. et al. Polarization speckles and skin applications. in Imaging in Dermatology (eds Hamblin, M. R., Avci, P. & Gupta, G. K.) (Amsterdam: Academic Press, 2016), 77-87.
[18] Ghosh, N. & Vitkin, I. A. Tissue polarimetry: concepts, challenges, applications, and outlook. Journal of Biomedical Optics 16, 110801 (2011). doi: 10.1117/1.3652896
[19] Ramella-Roman, J. C. & Novikova, T. Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications. (Cham: Springer, 2023).
[20] Pierangelo, A. et al. Multispectral mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. Journal of Biomedical Optics 18, 046014 (2013). doi: 10.1117/1.JBO.18.4.046014
[21] Doronin, A. et al. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface. Journal of Biomedical Optics 21, 071117 (2016). doi: 10.1117/1.JBO.21.7.071117
[22] Ali, Z. et al. Assessment of tissue pathology using optical polarimetry. Lasers in Medical Science 37, 1907-1919 (2022). doi: 10.1007/s10103-021-03450-7
[23] Yao, J., Yang, M. & Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chemical Reviews 114, 6130-6178 (2014). doi: 10.1021/cr200359p
[24] Singh, M. D., Ghosh, N. & Vitkin, I. A. Mueller matrix polarimetry in biomedicine: enabling technology, biomedical applications, and future prospects. in Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications (eds Ramella-Roman, J. C. & Novikova, T.) (Cham: Springer, 2023), 61-103.
[25] Samim, M., Krouglov, S. & Barzda, V. Nonlinear stokes-mueller polarimetry. Physical Review A 93, 013847 (2016). doi: 10.1103/PhysRevA.93.013847
[26] Wu, P. J. & Walsh, J. T. Jr. Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light. Journal of Biomedical Optics 11, 014031 (2006). doi: 10.1117/1.2162851
[27] Goldstein, D. H. Polarized Light. (Boca Raton: CRC Press, 2017).
[28] Le, D. L. et al. Characterization of healthy and cancerous human skin tissue utilizing Stokes–Mueller polarimetry technique. Optics Communications 480, 126460 (2021). doi: 10.1016/j.optcom.2020.126460
[29] Ivanov, D. et al. Polarization and depolarization metrics as optical markers in support to histopathology of ex vivo colon tissue. Biomedical Optics Express 12, 4560-4572 (2021). doi: 10.1364/BOE.426713
[30] Jacques, S. L. Optical properties of biological tissues: a review. Physics in Medicine and Biology 58, R37-R61 (2013). doi: 10.1088/0031-9155/58/11/R37
[31] Alouini, M. et al. Multispectral polarimetric imaging with coherent illumination: towards higher image contrast. Proceedings of SPIE 5432, Polarization: Measurement, Analysis, and Remote Sensing VI. Orlando, Florida, United States: SPIE, 2004.
[32] Dupont, J. et al. Polarization analysis of speckle field below its transverse correlation width: application to surface and bulk scattering. Optics Express 22, 24133-24141 (2014). doi: 10.1364/OE.22.024133
[33] Sankaran, V., Walsh, J. T. Jr. & Maitland, D. J. Comparative study of polarized light propagation in biologic tissues. Journal of Biomedical Optics 7, 300-306 (2002). doi: 10.1117/1.1483318
[34] Amaral, I. C. et al. Application of biospeckle laser technique for determining biological phenomena related to beef aging. Journal of Food Engineering 119, 135-139 (2013). doi: 10.1016/j.jfoodeng.2013.05.015
[35] Pedram, O. et al. Evaluation of pitting corrosion by dynamic speckle pattern analysis. Scientific Reports 13, 8549 (2023). doi: 10.1038/s41598-023-35559-w
[36] Dunn, A. K. et al. Dynamic imaging of cerebral blood flow using laser speckle. Journal of Cerebral Blood Flow & Metabolism 21, 195-201 (2001).
[37] Facchin, M., Bruce, G. D. & Dholakia, K. Measurement of variations in gas refractive index with 10-9 resolution using laser speckle. ACS Photonics 9, 830-836 (2022).
[38] Braga, R. A. et al. Time history speckle pattern under statistical view. Optics Communications 281, 2443-2448 (2008). doi: 10.1016/j.optcom.2007.12.069
[39] Asakura, T. & Takai, N. Dynamic laser speckles and their application to velocity measurements of the diffuse object. Applied Physics 25, 179-194 (1981). doi: 10.1007/BF00902971
[40] Okamoto, T. & Asakura, T. Ⅲ: the statistics of dynamic speckles. Progress in Optics 34, 183-248 (1995).
[41] Panahi, M. et al. Detection of intralayer alignment in multicomponent lipids by dynamic speckle pattern analysis. Journal of Biophotonics 15, e202200034 (2022). doi: 10.1002/jbio.202200034
[42] Farzam Rad, V. et al. Speckle pattern analysis of crumpled papers. Applied Optics 58, 6549-6554 (2019). doi: 10.1364/AO.58.006549
[43] Arizaga, R. et al. Following the drying of spray paints using space and time contrast of dynamic speckle. Journal of Coatings Technology and Research 3, 295-299 (2006). doi: 10.1007/s11998-006-0025-2
[44] Tuchin, V. V. et al. Optical and osmotic properties of human sclera. Proceedings of SPIE 2979, Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies Ⅱ. San Jose, CA, United States: SPIE, 1997.
[45] Abbasian, V. et al. Dynamic speckle pattern analysis of pitting corrosion. Proceedings of SPIE 128930W, 238-241 (2024).
[46] Bazulev, N. et al. Laser monitor for soft and hard biotissue analysis using dynamic speckle photography. Laser Physics 13, 1-10 (2003).
[47] Aizu, Y. & Asakura, T. Bio-speckles. In Trends in Optics (ed Consortini, A.) (San Diego: Academic Press, 1996), 27-49.
[48] Rabal, H. J. & Braga, Jr. R. A. Dynamic Laser Speckle and Applications. (Boca Raton: CRC Press, 2018).
[49] Bazylev, N. et al. Quasi-real time bio–Tissues monitoring using dynamic laser speckle photography. Journal of Visualization 6, 371-380 (2003). doi: 10.1007/BF03181744
[50] Farzam Rad, V. et al. Non-invasive in situ monitoring of bone scaffold activity by speckle pattern analysis. Biomedical Optics Express 11, 6324-6336 (2020). doi: 10.1364/BOE.401740
[51] Heeman, W. et al. Clinical applications of laser speckle contrast imaging: a review. Journal of Biomedical Optics 24, 080901 (2019).
[52] Mendoza-Herrera, L. J. et al. Measurement of latex microparticle size by dynamic speckle technique. Optics and Lasers in Engineering 140, 106528 (2021). doi: 10.1016/j.optlaseng.2020.106528
[53] Braga Júnior, R. A., Rivera, F. P. & Moreira, J. A Practical Guide to Biospeckle Laser Analysis: Theory and Software. (Lavras: UFLA, 2016).
[54] Pandiselvam, R. et al. Biospeckle laser technique–A novel non-destructive approach for food quality and safety detection. Trends in Food Science & Technology 97, 1-13 (2020).
[55] Catalano, M. D., Rivera, F. P. & Braga, R. A. Viability of biospeckle laser in mobile devices. Optik 183, 897-905 (2019). doi: 10.1016/j.ijleo.2019.02.055
[56] Chatterjee, A. et al. Study of visual processing techniques for dynamic speckles: a comparative analysis. Print at https://arxiv.org/abs/2106.15507 (2021).
[57] Abbasian, V. et al. Differentiating tumor specimens by polarimetric speckle pattern analysis. Proceedings of SPIE 1284004, 21-25 (2024).
[58] Rabal, H. J. et al. Numerical model for dynamic speckle: an approach using the movement of the scatterers. Journal of Optics A: Pure and Applied Optics 5, S381-S385 (2003). doi: 10.1088/1464-4258/5/5/396
[59] Schnell, U., Piot, J. & Dändliker, R. Detection of movement with laser speckle patterns: statistical properties. Journal of the Optical Society of America A 15, 207-216 (1998). doi: 10.1364/JOSAA.15.000207
[60] Qureshi, M. M. et al. Advances in laser speckle imaging: from qualitative to quantitative hemodynamic assessment. Journal of Biophotonics 17, e202300126 (2024). doi: 10.1002/jbio.202300126
[61] Nishizawa, N. & Kuchimaru, T. Depth estimation of tumor invasion in early gastric cancer using scattering of circularly polarized light: Monte Carlo Simulation study. Journal of Biophotonics 15, e202200062 (2022). doi: 10.1002/jbio.202200062
[62] Nishizawa, N. et al. Spatial discrimination of cancer using circular polarization of light scattered by biological tissues. Proceedings of SPIE 11521, Biomedical Imaging and Sensing Conference 2020. Yokohama, Japan: SPIE, 2020.
[63] Arizaga, R., Trivi, M. & Rabal, H. Speckle time evolution characterization by the co-occurrence matrix analysis. Optics & Laser Technology 31, 163-169 (1999).
[64] Mavilio, A. et al. Characterization of a paint drying process through granulometric analysis of speckle dynamic patterns. Signal Processing 90, 1623-1630 (2010). doi: 10.1016/j.sigpro.2009.11.010
[65] Arizaga, R. Methods of dynamic speckle analysis: statistical analysis. in Dynamic Laser Speckle and Applications (eds Rabal, H. J. & Braga, R. A. Jr.) (Boca Raton: CRC Press, 2018), 95-113.
[66] Lu, R. S. et al. Grinding surface roughness measurement based on the co-occurrence matrix of speckle pattern texture. Applied Optics 45, 8839-8847 (2006). doi: 10.1364/AO.45.008839
[67] Dhanasekar, B. et al. Evaluation of surface roughness based on monochromatic speckle correlation using image processing. Precision Engineering 32, 196-206 (2008). doi: 10.1016/j.precisioneng.2007.08.005
[68] Yoshimura, T., Kato, K. & Nakagawa, K. Surface-roughness dependence of the intensity correlation function under speckle-pattern illumination. Journal of the Optical Society of America A 7, 2254-2259 (1990). doi: 10.1364/JOSAA.7.002254
[69] Abbasian, V. et al. Digital holographic microscopy for 3D surface characterization of polymeric nanocomposites. Ultramicroscopy 185, 72-80 (2018). doi: 10.1016/j.ultramic.2017.11.013
[70] Dhandayuthapani, B. et al. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science (2011). doi: 10.1155/2011/290602
[71] Nanni, L. et al. Different approaches for extracting information from the co-occurrence matrix. PLoS One 8, e83554 (2013). doi: 10.1371/journal.pone.0083554
[72] Vadivel, A., Sural, S. & Majumdar, A. K. An integrated color and intensity co-occurrence matrix. Pattern Recognition Letters 28, 974-983 (2007). doi: 10.1016/j.patrec.2007.01.004
[73] Hajjarian, Z. et al. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds. Scientific Reports 6, 37949 (2016). doi: 10.1038/srep37949
[74] Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232-234 (2012). doi: 10.1038/nature11578
[75] Xu, Z. J., Joenathan, C. & Khorana, B. M. Temporal and spatial properties of the time-varying speckles of botanical specimens. Optical Engineering 34, 1487-1502 (1995). doi: 10.1117/12.199878
[76] Hajjarian, Z. & Nadkarni, S. K. Evaluating the viscoelastic properties of tissue from laser speckle fluctuations. Scientific Reports 2, 316 (2012). doi: 10.1038/srep00316
[77] Roy, A. Shannon entropy and degree of polarization of a speckle pattern. Optics Letters 46, 202-205 (2021). doi: 10.1364/OL.415381
[78] Ansari, M. Z. et al. Real time and online dynamic speckle assessment of growing bacteria using the method of motion history image. Journal of Biomedical Optics 21, 066006 (2016). doi: 10.1117/1.JBO.21.6.066006
[79] Rodríguez-Núñez, O. & Novikova, T. Polarimetric techniques for the structural studies and diagnosis of brain. Advanced Optical Technologies 11, 157-171 (2022). doi: 10.1515/aot-2022-0015
[80] Rodríguez-Núñez, O. et al. Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Biomedical Optics Express 12, 6674-6685 (2021). doi: 10.1364/BOE.439754
[81] Ulyanov, A. S. Application of laser speckles for identification of tissues with pathological changes. Quantum Electronics 38, 557-562 (2008). doi: 10.1070/QE2008v038n06ABEH013867
[82] Gros, R. et al. Effects of formalin fixation on polarimetric properties of brain tissue: fresh or fixed?. Neurophotonics 10, 025009 (2023).
[83] Kaifi, R. A review of recent advances in brain tumor diagnosis based on AI-based classification. Diagnostics 13, 3007 (2023). doi: 10.3390/diagnostics13183007