[1] Wieg, A. T., Kodera, Y., Wang, Z., Dames, C. & Garay, J. E. Thermomechanical properties of rare-earth-doped AlN for laser gain media: the role of grain boundaries and grain size. Acta. Mater. 86, 148–156 (2015). doi: 10.1016/j.actamat.2014.11.045
[2] Kim, W. et al. Ceramic windows and gain media for high-energy lasers. Opt. Eng. 52, 021003 (2012). doi: 10.1117/1.OE.52.2.021003
[3] Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016). doi: 10.1038/nature18619
[4] Liu, R. M. et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett. 118, 237401 (2017). doi: 10.1103/PhysRevLett.118.237401
[5] Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl. Acad. Sci. USA 106, 10516–10521 (2009). doi: 10.1073/pnas.0903748106
[6] Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. & Keitel, C. H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012). doi: 10.1103/RevModPhys.84.1177
[7] Steinmeyer, J. D. et al. Construction of a femtosecond laser microsurgery system. Nat. Protoc. 5, 395–407 (2010). doi: 10.1038/nprot.2010.4
[8] Polini, M. Tuning terahertz lasers via graphene plasmons. Science 351, 229–231 (2016). doi: 10.1126/science.aad7995
[9] Ikesue, A. & Aung, Y. L. Synthesis and performance of advanced ceramic lasers. J. Am. Ceram. Soc. 89, 1936–1944 (2006). doi: 10.1111/j.1551-2916.2006.01043.x
[10] Waxler, R. M., Cleek, G. W., Malitson, I. H., Dodge, M. J. & Hahn, T. A. Optical and mechanical properties of some neodymium-doped laser glasses. J. Res. Natl. Bur. Stand A 75A, 163–174 (1971).
[11] Klein, P. H. & Croft, W. J. Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°–300°K. J. Appl. Phys. 38, 1603–1607 (1967). doi: 10.1063/1.1709730
[12] Ikesue, A. & Aung, Y. L. Ceramic laser materials. Nat. Photonics 2, 721–727 (2008). doi: 10.1038/nphoton.2008.243
[13] Ikesue, A., Aung, Y. L., Taira, T., Kamimura, T. & Yoshida, K. et al. Progress in ceramic lasers. Annu. Rev. Mater. Res. 36, 397–429 (2006). doi: 10.1146/annurev.matsci.36.011205.152926
[14] Ikesue, A. Polycrystalline Nd:YAG ceramics lasers. Opt. Mater. 19, 183–187 (2002). doi: 10.1016/S0925-3467(01)00217-8
[15] Xu, C. W., Yang, C. D., Zhu, H. Y., Ye, Y. L. & Duan, Y. M. et al. Diode-pumped Nd:LuAG ceramic laser on 4F3/2-4I13/2 transition. Opt. Mater. 71, 121–124 (2017). doi: 10.1016/j.optmat.2016.04.021
[16] Fornasiero, L., Mix, E., Peters, V., Petermann, K. & Huber, G. Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3. Ceram. Int. 26, 589–592 (2000). doi: 10.1016/S0272-8842(99)00101-7
[17] Choudhary, A., Beecher, S. J., Dhingra, S., D'Urso, B. & Parsonage, T. L. et al. 456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction. Opt. Lett. 40, 1912–1915 (2015). doi: 10.1364/OL.40.001912
[18] Toci, G., Vannini, M., Ciofini, M., Lapucci, A. & Pirri, A. et al. Nd3+-doped Lu2O3 transparent sesquioxide ceramics elaborated by the spark plasma sintering (SPS) method. Part 2: first laser output results and comparison with Nd3+-doped Lu2O3 and Nd3+-Y2O3 ceramics elaborated by a conventional method. Opt. Mater. 41, 12–16 (2015). doi: 10.1016/j.optmat.2014.09.033
[19] Penilla, E. H., Kodera, Y. & Garay, J. E. Blue-green emission in terbium-doped alumina (Tb: Al2O3) transparent ceramics. Adv. Funct. Mater. 23, 6036–6043 (2013). doi: 10.1002/adfm.201300906
[20] Lupei, V., Lupei, A. & Ikesue, A. Transparent polycrystalline ceramic laser materials. Opt. Mater. 30, 1781–1786 (2008). doi: 10.1016/j.optmat.2008.03.003
[21] Powell, R. W., Ho, C. Y. & Liley, P. E. Thermal Conductivity of Selected Materials. National Standard Reference Data Series. (U.S. Dept. of Commerce, National Bureau of Standards, Washington, 1966; 1–175.
[22] Yao, W. L., Liu, J., Holland, T. B., Huang, L. & Xiong, Y. H. et al. Grain size dependence of fracture toughness for fine grained alumina. Scr. Mater. 65, 143–146 (2011). doi: 10.1016/j.scriptamat.2011.03.032
[23] Li W. W., He D. B., Li S. G., Chen W., Chen S. B. et al. Optical and thermal properties of a new ND-doped phosphate laser glass. In Proc. SPIE Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers. 878629 (SPIE, Shanghai, China, 2013).
[24] Koechner, W. Solid-State Laser Engineering (Springer, Berlin, 2006).
[25] Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960). doi: 10.1038/187493a0
[26] Wall, K. F. & Sanchez, A. Titanium sapphire lasers. Linc. Lab J. 3, 447–462 (1990).
[27] Chambers, M. D. & Clarke, D. R. Doped oxides for high-temperature luminescence and lifetime thermometry. Annu Rev. Mater. Res. 39, 325–359 (2009). doi: 10.1146/annurev-matsci-112408-125237
[28] Williams, G. R., Bayram, S. B., Rand, S. C., Hinklin, T. & Laine, R. M. Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys. Rev. A 65, 013807 (2001). doi: 10.1103/PhysRevA.65.013807
[29] Li, B., Williams, G., Rand, S. C., Hinklin, T. & Laine, R. M. Continuous-wave ultraviolet laser action in strongly scattering Nd-doped Alumina. Opt. Lett. 27, 394–396 (2002). doi: 10.1364/OL.27.000394
[30] Song, Q., Li, C. R., Li, J. Y., Ding, W. Y. & Li, S. F. et al. Photoluminescence properties of the Yb: Er co-doped Al2O3 thin film fabricated by microwave ECR plasma source enhanced RF magnetron sputtering. Opt. Mater. 28, 1344–1349 (2006). doi: 10.1016/j.optmat.2005.08.006
[31] Zhou, B., Xiao, Z. S., Huang, A. P., Yan, L. & Zhu, F. et al. Effect of Tm–Er concentration ratio on the photoluminescence of Er–Tm: Al2O3 thin films fabricated by pulsed laser deposition. Prog. Nat. Sci. 18, 661–664 (2008). doi: 10.1016/j.pnsc.2008.01.009
[32] Serna, R., Nuñez-Sanchez, S., Xu, F. & Afonso, C. N. Enhanced photoluminescence of rare-earth doped films prepared by off-axis pulsed laser deposition. Appl. Surf. Sci. 257, 5204–5207 (2011). doi: 10.1016/j.apsusc.2010.11.148
[33] Kumaran, R., Webster, S. E., Penson, S., Li, W. & Tiedje, T. et al. Epitaxial neodymium-doped sapphire films, a new active medium for waveguide lasers. Opt. Lett. 34, 3358–3360 (2009). doi: 10.1364/OL.34.003358
[34] Kumaran, R., Tiedje, T., Webster, S. E., Penson, S. & Li, W. Epitaxial Nd-doped α-(Al1xGax)2O3 films on sapphire for solid-state waveguide lasers. Opt. Lett. 35, 3793–3795 (2010). doi: 10.1364/OL.35.003793
[35] Waeselmann, S. H., Heinrich, S., Kränkel, C. & Huber, G. Lasing of Nd3+ in sapphire. Laser Photonics Rev. 10, 510–516 (2016). doi: 10.1002/lpor.201500319
[36] Waeselmann S. H., Heinrich S., Kraenkel C., Huber G. Lasing in Nd3+-doped sapphire. Adv. Solid State Lasers. 6–8pp (OSA, Berlin, Germany, 2015).
[37] Waeselmann, S. H., Rüter, C. E., Kip, D., Kränkel, C. & Huber, G. Nd: sapphire channel waveguide laser. Opt. Mater. Express 7, 2361–2367 (2017). doi: 10.1364/OME.7.002361
[38] Apetz, R. & Van Bruggen, M. P. B. Transparent alumina: a light-scattering model. J. Am. Ceram. Soc. 86, 480–486 (2003). doi: 10.1111/j.1151-2916.2003.tb03325.x
[39] Penilla, E. H., Hardin, C. L., Kodera, Y., Basun, S. A. & Evans, D. R. et al. The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: modeling and experiments on ruby (Cr: Al2O3). J. Appl. Phys. 2, 023106 (2016). doi: 10.1063/1.4939090
[40] Krebs, J. K. & Happek, U. Yb3+energy levels in a-Al2O3. J. Lumin. 94-95, 65–68 (2001).
[41] Sanamyan, T., Pavlacka, R., Gilde, G. & Dubinskii, M. Spectroscopic properties of Er3+-doped α-Al2O3. Opt. Mater. 35, 821–826 (2013). doi: 10.1016/j.optmat.2012.10.036
[42] Pecharromán, C., Mata-Osoro, G., Díaz, L. A., Torrecillas, R. & Moya, J. S. On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres. Opt. Express 17, 6899–6912 (2009). doi: 10.1364/OE.17.006899
[43] Penilla, E. H., Kodera, Y. & Garay, J. E. Simultaneous Synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD). Mater. Sci. Eng. B 177, 1178–1187 (2012). doi: 10.1016/j.mseb.2012.05.026
[44] Bodišová, K., Klement, R., Galusek, D., Pouchlý, V. & Drdlík, D. et al. Luminescent rare-earth-doped transparent alumina ceramics. J. Eur. Ceram. Soc. 36, 2975–2980 (2016). doi: 10.1016/j.jeurceramsoc.2015.12.032
[45] Thompson, A. M., Soni, K. K., Chan, H. M., Harmer, M. P. & Williams, D. B. Dopant distributions in rare-earth-doped alumina. J. Am. Ceram. Soc. 80, 373–376 (1997). doi: 10.1111/j.1151-2916.1997.tb02840.x
[46] Cho, J., Wang, C. M., Chan, H. M., Rickman, J. M. & Harmer, M. P. A study of grain-boundary structure in rare-earth doped aluminas using an EBSD technique. J. Mater. Sci. 37, 59–64 (2002). doi: 10.1023/A:1013185506017
[47] Garay, J. E. Current-activated, pressure-assisted densification of materials. Annu Rev. Mater. Res. 40, 445–468 (2010). doi: 10.1146/annurev-matsci-070909-104433
[48] Cantwell, P. R., Ma, S. L., Bojarski, S. A., Rohrer, G. S. & Harmer, M. P. Expanding time-temperature-transformation (TTT) diagrams to interfaces: a new approach for grain boundary engineering. Acta. Mater. 106, 78–86 (2016). doi: 10.1016/j.actamat.2016.01.010
[49] Bojarski, S. A.., Stuer, M.., Zhao, Z.., Bowen, P.., & Rohrer, G. S.. Influence of Y and La additions on grain growth and the grain-boundary character distribution of alumina. J. Am. Ceram. Soc. 97, 622–630 (2014). doi: 10.1111/jace.12669
[50] Grasso, S., Yoshida, H., Porwal, H., Sakka, Y. & Reece, M. Highly transparent α-alumina obtained by low cost high pressure SPS. Ceram. Int. 39, 3243–3248 (2013). doi: 10.1016/j.ceramint.2012.10.012
[51] Yoon, S. J. & Mackenzie, J. I. Cryogenically cooled 946nm Nd: YAG laser. Opt. Express 22, 8069–8075 (2014). doi: 10.1364/OE.22.008069
[52] Krupke, W. Radiative transition probabilities within the 4f3 ground configuration of Nd: YAG. IEEE J. Quantum Electron 7, 153–159 (1971). doi: 10.1109/JQE.1971.1076623
[53] Kaminskii, A. A. Laser Crystals: Their Physics and Properties. (Springer, Berlin Heidelberg, 1990).
[54] Silfvast, W. T. Laser Fundamentals.. (Cambridge University Press, Cambridge, 2004).
[55] Campbell, J. H. & Suratwala, T. I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J. Non Cryst. Solids 236-264, 318–341 (2000).
[56] Aull, B. & Jenssen, H. Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron 18, 925–930 (1982). doi: 10.1109/JQE.1982.1071611
[57] Lai S. T. Review of spectroscopic and laser properties of emerald. In Proc. Volume 0622, High Power and Solid State Lasers. 146–150 (SPIE, Los Angeles, CA, 1986).
[58] Silfvast W. T. Fundamentals of Photonics. pp1–45 (SPIE, Storrs, CT, 2003).