[1] |
Sarkar SG, Dey D. Mathematical morphology aided enhancement and segmentation of T2-weighted brain MRI images. Proceedings of International Conference on Intelligent Control Power and Instrumentation (ICICPI); 21–23 October 2016, Kolkata, India, IEEE, 2016, pp122–126. |
[2] |
Sridhar B, KVVS Reddy, Prasad AM. An unsupervisory qualitative image enhancement using adaptive morphological bilateral filter for medical images. Int J Comput Appl 2014; 99: 31–38. |
[3] |
Mkayes AA, Saad NM, Faye I, Walter N. Image histogram and FFT based critical study on noise in fluorescence microscope images. Proceedings of the 6th International Conference on Intelligent and Advanced Systems (ICIAS); 15–17 August 2016; Kuala Lumpur, Malaysia, Malaysia. IEEE, 2016, pp1–4. |
[4] |
Bai XZ. Morphological infrared image enhancement based on multi-scale sequential toggle operator using opening and closing as primitives. Infrared Phys Technol 2015; 68: 143–151. doi: 10.1016/j.infrared.2014.11.015 |
[5] |
Han JH, Ma Y, Zhou B, Fan F, Liang K et al. A robust infrared small target detection algorithm based on human visual system. IEEE Geosci Remote Sens Lett 2014; 11: 2168–2172. doi: 10.1109/LGRS.2013.2252417 |
[6] |
Yang L, Yang J, Yang K. Adaptive detection for infrared small target under sea-sky complex background. Electron Lett 2004; 40: 1083–1085. doi: 10.1049/el:20045204 |
[7] |
Maška M, Ulman V, Svoboda D, Matula P, Matula P et al. A benchmark for comparison of cell tracking algorithms. Bioinformatics 2014; 30: 1609–1617. doi: 10.1093/bioinformatics/btu080 |
[8] |
Bendicks C, Tarlet D, Michaelis B, Thévenin D, Wunderlich B. Use of coloured tracers in gas flow experiments for a lagrangian flow analysis with increased tracer density. In: Denzler J, Notni G, Süße H, editors. Pattern Recognition: 31st DAGM Symposium Proceedings; Berlin Heidelberg: Springer; 2009, pp392–401. |
[9] |
Liu W, Ma X, Li X, Chen L, Zhang Y et al. High-precision pose measurement method in wind tunnels based on laser-aided vision technology. Chin J Aeronaut 2015; 28: 1121–1130. doi: 10.1016/j.cja.2015.05.009 |
[10] |
Wei MS, Xing F, You Z, Wang G. Multiplexing image detector method for digital sun sensors with arc-second class accuracy and large FOV. Opt Express 2014; 22: 23094–23107. doi: 10.1364/OE.22.023094 |
[11] |
Qu F, Liu JZ, Xu H, Ye X, Yang DJ et al Design of real-time small target detection system for infrared image based on FPGA. Proceedings of the 2010 International Conference on Optics Photonics and Energy Engineering (OPEE); 10–11 May 2010; Wuhan, China: Wuhan, China, IEEE, 2010, pp9–13. |
[12] |
Mende SB, Heetderks H, Frey HU, Lampton M, Geller SP et al. Far ultraviolet imaging from the IMAGE spacecraft. 1. System design. Space Sci Rev 2000; 91: 243–270. |
[13] |
Bai XZ, Zhang S, Du BB, Liu ZY, Jin T et al. Survey on dim small target detection in clutter background: wavelet, inter-frame and filter based algorithms. Procedia Eng 2011; 15: 479–483. doi: 10.1016/j.proeng.2011.08.091 |
[14] |
Zhang F, Li CF, Shi LN. Detecting and tracking dim moving point target in IR image sequence. Infrared Phys Technol 2005; 46: 323–328. doi: 10.1016/j.infrared.2004.06.001 |
[15] |
Kim S, Lee J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track. Pattern Recogn 2012; 45: 393–406. doi: 10.1016/j.patcog.2011.06.009 |
[16] |
Sun T, Xing F, Wang XC, Li J, Wei MS et al. Effective star tracking method based on optical flow analysis for star trackers. Appl Opt 2016; 55: 10335–10340. doi: 10.1364/AO.55.010335 |
[17] |
Deng LZ, Zhu H, Wei YT, Lu GM, Wei Y. Small target detection using quantum genetic morphological filter. Proceedings of the Volume 9812, MIPPR 2015: Automatic Target Recognition and Navigation. Ninth International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR2015); 14 December 2015; Enshi, China, SPIE, 2015, 9812: 98120A. |
[18] |
Bai XZ, Zhou FG. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn 2010; 43: 2145–2156. doi: 10.1016/j.patcog.2009.12.023 |
[19] |
Jackway PT. Improved morphological top-hat. Electron Lett 2000; 36: 1194–1195. doi: 10.1049/el:20000873 |
[20] |
Jie J, Liu L, Zhang GJ. Robust and accurate star segmentation algorithm based on morphology. Opt Eng 2016; 55: 063101. doi: 10.1117/1.OE.55.6.063101 |
[21] |
Genovese M, Napoli E. FPGA-based architecture for real time segmentation and denoising of HD video. J Real-Time Image Process 2013; 8: 389–401. doi: 10.1007/s11554-011-0238-1 |
[22] |
Dong Y, Xing F, You Z. An APS-based autonomous star tracker. Proceedings of the Volume 5633, Advanced Materials and Devices for Sensing and Imaging II; 20 January 2005; Beijing, China, SPIE, 2005, 5633: pp225–233. |
[23] |
Arbabmir MV, Mohammadi SM, Salahshour S, Somayehee F. Improving night sky star image processing algorithm for star sensors. J Opt Soc Am A 2014; 31: 794–801. doi: 10.1364/JOSAA.31.000794 |
[24] |
Zhao JF, Feng HJ, Xu ZH, Li Q, Peng H. Real-time automatic small target detection using saliency extraction and morphological theory. Opt Laser Technol 2013; 47: 268–277. doi: 10.1016/j.optlastec.2012.08.009 |
[25] |
Wei MS, Xing F, You Z. An implementation method based on ERS imaging mode for sun sensor with 1 kHz update rate and 1″ precision level. Opt Express 2013; 21: 32524–32533. doi: 10.1364/OE.21.032524 |
[26] |
Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat Commun 2016; 7: 12471. doi: 10.1038/ncomms12471 |
[27] |
Ramesh B, George AD, Lam H. Real-time, low-latency image processing with high throughput on a multi-core SoC. Proceedings of the 2016 IEEE High Performance Extreme Computing Conference (HPEC); 13–15 September 2016; Waltham, MA, USA, IEEE, 2016, pp1–7. |
[28] |
Li J, Liu ZL, Liu FD. Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing. Opt Express 2017; 25: 4018–4037. doi: 10.1364/OE.25.004018 |
[29] |
Li ZL, Liang B, Zhang T, Zhu HL. Image simulation for airborne star tracker under strong background radiance. Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE); 25–27 May 2012; Zhangjiajie, China, IEEE, 2012, pp644–648. |
[30] |
Soille P. Morphological Image Analysis: Principles and Applications. Berlin: Springer; 2004. |
[31] |
Kim HS, Yoon HS, Trung KN, Lee GS. Automatic lung segmentation in CT images using anisotropic diffusion and morphology operation. Proceedings of the 7th IEEE International Conference on Computer and Information Technology; 16–19 October 2007; Aizu-Wakamatsu, Fukushima, Japan. IEEE: Aizu-Wakamatsu, Fukushima, Japan, 2007, pp557–561. |
[32] |
Delabie T. Star position estimation improvements for accurate star tracker attitude estimation. Proceedings of AIAA Guidance, Navigation, and Control Conference; Kissimmee, FL, USA: Kissimmee, FL, USA, AIAA, 2015, pp1–15. |
[33] |
Sun T, Xing F, You Z, Wei MS. Motion-blurred star acquisition method of the star tracker under high dynamic conditions. Opt Express 2013; 21: 20096–20110. doi: 10.1364/OE.21.020096 |
[34] |
Wei MS, Bao JY, Xing F, Liu ZY, Sun T et al System-on-a-chip based nano star tracker and its real-time image processing approach. Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites; August 6–11, 2016; Logan, UT, USA. AIAA/USU: Logan, UT, USA, 2016, ppSSC16-IV-3. |