| [1] | Georgakilas, V. et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464-5519 (2016). doi: 10.1021/acs.chemrev.5b00620 |
| [2] | Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711-723 (2010). doi: 10.1002/smll.200901934 |
| [3] | Patchkovskii, S. et al. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl Acad. Sci. USA 102, 10439-10444 (2005). doi: 10.1073/pnas.0501030102 |
| [4] | Han, N. et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013). doi: 10.1038/ncomms2448 |
| [5] | Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 13, 270-276 (2019). doi: 10.1038/s41566-019-0389-3 |
| [6] | Yan, H. G. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394-399 (2013). doi: 10.1038/nphoton.2013.57 |
| [7] | Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630-634 (2011). doi: 10.1038/nnano.2011.146 |
| [8] | Gomez-Diaz, J. S., Tymchenko, M. & Alù, A. Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited]. Optical Mater. Express 5, 2313-2329 (2015). doi: 10.1364/OME.5.002313 |
| [9] | Liu, Z. M. et al. Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses. ACS Nano 11, 5031-5040 (2017). doi: 10.1021/acsnano.7b01748 |
| [10] | Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495-513 (2007). doi: 10.1002/adma.200600882 |
| [11] | Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photonics 11, 639-645 (2017). doi: 10.1038/s41566-017-0004-4 |
| [12] | Zheng, X. R. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2, 17-25 (2019). doi: 10.1038/s41928-018-0191-0 |
| [13] | Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577-587 (2014). doi: 10.1038/nnano.2014.157 |
| [14] | Vorobyev, A. Y. & Guo, C. L. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385-407 (2013). doi: 10.1002/lpor.201200017 |
| [15] | Zhang, Y. L. et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today 5, 15-20 (2010). doi: 10.1016/j.nantod.2009.12.009 |
| [16] | Zheng, X. R. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun. 6, 8433 (2015). doi: 10.1038/ncomms9433 |
| [17] | Gengler, R. Y. N. et al. Revealing the ultrafast process behind the photoreduction of graphene oxide. Nat. Commun. 4, 2560 (2013). doi: 10.1038/ncomms3560 |
| [18] | Strong, V. et al. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6, 1395-1403 (2012). doi: 10.1021/nn204200w |
| [19] | Guo, L. et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50, 1667-1673 (2012). doi: 10.1016/j.carbon.2011.12.011 |
| [20] | Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688-3689 (1965). doi: 10.1063/1.1703071 |
| [21] | Bonse, J. et al. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017). http://ieeexplore.ieee.org/document/7581030/ |
| [22] | Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272 |
| [23] | Wang, L. et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 6, e17112 (2017). doi: 10.1038/lsa.2017.112 |
| [24] | Huang, J. et al. Cylindrically focused nonablative femtosecond laser processing of long-range uniform periodic surface structures with tunable diffraction efficiency. Adv. Opt. Mater. 7, 1900706 (2019). doi: 10.1002/adom.201900706 |
| [25] | Huang, J. et al. Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification. Nanophotonics 8, 869-878 (2019). doi: 10.1515/nanoph-2019-0056 |
| [26] | Sidhu, M. S., Munjal, P. & Singh, K. P. High-fidelity large area nano-patterning of silicon with femtosecond light sheet. Appl. Phys. A 124, 46 (2018). |
| [27] | Huang, M. et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062-4070 (2009). doi: 10.1021/nn900654v |
| [28] | Shvartzburg, A., Petite, G. & Auby, N. S-polarized surface electromagnetic waves in inhomogeneous media: exactly solvable models. J. Opt. Soc. Am. B 16, 966-970 (1999). doi: 10.1364/JOSAB.16.000966 |
| [29] | Kim, K. Excitation of s-polarized surface electromagnetic waves in inhomogeneous dielectric media. Opt. Express 16, 13354-13363 (2008). doi: 10.1364/OE.16.013354 |
| [30] | Sun, Z. J. et al. Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons. Opt. Express 22, 4714-4722 (2014). doi: 10.1364/OE.22.004714 |
| [31] | Chitara, B. et al. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 23, 5419-5424 (2011). doi: 10.1002/adma.201101414 |
| [32] | Cao, Y. et al. Fully suspended reduced graphene oxide photodetector with annealing temperature-dependent broad spectral binary photoresponses. ACS Photonics 4, 2797-2806 (2017). doi: 10.1021/acsphotonics.7b00768 |
| [33] | Yao, H. B. et al. Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction. J. Mater. Chem. 20, 5190-5195 (2010). doi: 10.1039/c0jm00094a |
| [34] | Flanders, D. C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Appl. Phys. Lett. 42, 492-494 (1983). doi: 10.1063/1.93979 |
| [35] | Xin, W. et al. Black-phosphorus-based orientation-induced diodes. Adv. Mater. 30, 1704653 (2018). doi: 10.1002/adma.201704653 |
| [36] | Island, J. O. et al. TiS3 transistors with tailored morphology and electrical properties. Adv. Mater. 27, 2595-2601 (2015). doi: 10.1002/adma.201405632 |
| [37] | You, R. et al. Laser fabrication of graphene-based flexible electronics. Adv. Mater. n/a, 1901981 (2019). |
| [38] | Jiang, H. B. et al. Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. J. Mater. Sci. 55, 480-497 (2020). doi: 10.1007/s10853-019-03981-z |
| [39] | Zhang, Y. L. et al. A "Yin"-"Yang" complementarity strategy for design and fabrication of dual-responsive bimorph actuators. Nano Energy 68, 104302 (2020). doi: 10.1016/j.nanoen.2019.104302 |
| [40] | Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). doi: 10.1021/ja01539a017 |
| [41] | Jiang, W. S. et al. Reduced graphene oxide-based optical sensor for detecting specific protein. Sens. Actuators B 249, 142-148 (2017). doi: 10.1016/j.snb.2017.03.175 |
| [42] | Gnilitskyi, I. et al. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci. Rep. 7, 8485 (2017). doi: 10.1038/s41598-017-08788-z |
| [43] | Kymakis, E. et al. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Adv. Funct. Mater. 23, 2742-2749 (2013). doi: 10.1002/adfm.201202713 |
| [44] | Tian, H. et al. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. Nano Lett. 14, 3214-3219 (2014). doi: 10.1021/nl5005916 |
| [45] | Lin, J. et al. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5714 (2014). doi: 10.1038/ncomms6714 |
| [46] | Gao, W. L. et al. Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6, 7806-7813 (2012). doi: 10.1021/nn301888e |
| [47] | Beltaos, A. et al. Femtosecond laser induced periodic surface structures on multi-layer graphene. J. Appl. Phys. 116, 204306 (2014). doi: 10.1063/1.4902950 |
| [48] | Kasischke, M. et al. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Appl. Surf. Sci. 445, 197-203 (2018). doi: 10.1016/j.apsusc.2018.03.086 |
| [49] | Ren, H. Y. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). doi: 10.1002/adma.201702590 |
| [50] | Xie, C. et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27, 1603886 (2017). doi: 10.1002/adfm.201603886 |
| [51] | Jalil, S. A. et al. Formation of controllable 1D and 2D periodic surface structures on cobalt by femtosecond double pulse laser irradiation. Appl. Phys. Lett. 115, 031601 (2019). doi: 10.1063/1.5103216 |