[1] Manifacier, J. C., Gasiot, J. & Fillard, J. P. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. Journal of Physics E:Scientific Instruments 9, 1002-1004 (1976). doi: 10.1088/0022-3735/9/11/032
[2] Ylilammi, M. & Ranta-Aho, T. Optical determination of the film thicknesses in multilayer thin film structures. Thin Solid Films 232, 56-62 (1993). doi: 10.1016/0040-6090(93)90762-E
[3] Tang, H. et al. Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics 75, 2042-2047 (1994). doi: 10.1063/1.356306
[4] Kwak, H. et al. Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning. Light:Advanced Manufacturing 2, 9-19 (2021).
[5] Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004-1008 (2018). doi: 10.1126/science.aat8084
[6] Zhou, T. K. et al. In situ optical backpropagation training of diffractive optical neural networks: publisher’s note. Photonics Research 8, 1323 (2020). doi: 10.1364/PRJ.401673
[7] Zhou, T. K. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nature Photonics 15, 367-373 (2021). doi: 10.1038/s41566-021-00796-w
[8] Yan, T. et al. Fourier-space diffractive deep neural network. Physical Review Letters 123, 023901 (2019). doi: 10.1103/PhysRevLett.123.023901
[9] Hughes, T. W. et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, 864-871 (2018). doi: 10.1364/OPTICA.5.000864
[10] Wu, J. M. et al. Analog optical computing for artificial intelligence. Engineering. http://dx. doi.org/10.1016/j.eng.2021.06.021 (in the press).
[11] Li, L. F. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. Journal of the Optical Society of America A 13, 1024-1035 (1996). doi: 10.1364/JOSAA.13.001024
[12] Katsidis, C. C. & Siapkas, D. I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics 41, 3978-3987 (2002). doi: 10.1364/AO.41.003978
[13] Forouhi, A. R. & Bloomer, I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Physical Review B 34, 7018-7026 (1986). doi: 10.1103/PhysRevB.34.7018
[14] Forouhi, A. R. & Bloomer, I. Optical properties of crystalline semiconductors and dielectrics. Physical Review B 38, 1865-1874 (1988). doi: 10.1103/PhysRevB.38.1865
[15] Jiang, J. et al. What is the space of spectral sensitivity functions for digital color cameras?. 2013 IEEE Workshop on Applications of Computer Vision (WACV). Clearwater Beach, FL, USA: IEEE, 2013,doi: 10.1109/WACV.2013.6475015.
[16] Peurifoy J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Science Advances 4, eaar4206 (2018). doi: 10.1126/sciadv.aar4206
[17] Liu, D. J. et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5, 1365-1369 (2018). doi: 10.1021/acsphotonics.7b01377
[18] So, S. et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041-1057 (2020). doi: 10.1515/nanoph-2019-0474
[19] Molesky, S. et al. Inverse design in nanophotonics. Nature Photonics 12, 659-670 (2018).
[20] Gao, L. et al. A bidirectional deep neural network for accurate silicon color design. Advanced Materials 31, 1905467 (2019). doi: 10.1002/adma.201905467
[21] Wu, B. et al. Machine prediction of topological transitions in photonic crystals. Physical Review Applied 14, 044032 (2020). doi: 10.1103/PhysRevApplied.14.044032
[22] Hu, B. Q. et al. Robust inverse-design of scattering spectrum in core-shell structure using modified denoising autoencoder neural network. Optics Express 27, 36276-36285 (2019). doi: 10.1364/OE.27.036276
[23] Ma, W. et al. Deep learning for the design of photonic structures. Nature Photonics 15, 77-90 (2021). doi: 10.1038/s41566-020-0685-y
[24] Ma, W. et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Advanced Materials 31, 1901111 (2019). doi: 10.1002/adma.201901111
[25] Minkov, M. et al. Inverse design of photonic crystals through automatic differentiation. ACS Photonics 7, 1729-1741 (2020). doi: 10.1021/acsphotonics.0c00327
[26] Liu, V. & Fan, S. H. S4 : a free electromagnetic solver for layered periodic structures. Computer Physics Communications 183, 2233-2244 (2012). doi: 10.1016/j.cpc.2012.04.026
[27] Anderson, E. et al. LAPACK Users’ Guide. 3rd edn. (Philadelphia: Society for Industrial and Applied Mathematics, 1999).
[28] Madsen, K. , Nielsen, H. B. & Tingleff, O. Methods for Non-Linear Least Squares Problems. (IMM, 2004).