[1] Li, X. et al. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Automation in Construction 86, 150-162 (2018). doi: 10.1016/j.autcon.2017.11.003
[2] Hong, J. et al. Three-dimensional display technologies of recent interest: principles, status, and issues. Applied Optics 50, H87-H115 (2011). doi: 10.1364/AO.50.000H87
[3] Geng, J. Three-dimensional display technologies. Advances in Optics and Photonics 5, 456-535 (2013). doi: 10.1364/AOP.5.000456
[4] Zhang, et al. Three-dimensional display technologies in wave and ray optics: a review. Chinese Optics Letters 12, 060002 (2014). doi: 10.3788/COL201412.060002
[5] Pan, Y. et al. A Review of Dynamic Holographic Three-Dimensional Display: Algorithms, Devices, and Systems. IEEE Transactions on Industrial Informatics 12, 1599-1610 (2016). doi: 10.1109/TII.2015.2496304
[6] Nozaki, A. et al. Dynamic visual responses of accommodation and vergence to electro-holographic images. Optics Express 25, 4542-4551 (2017). doi: 10.1364/OE.25.004542
[7] Matsushima, K. & Nakahara, S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method. Applied Optics 48, H54-H63 (2009). doi: 10.1364/AO.48.000H54
[8] Igarashi, S. et al. Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion. Optics Express 26, 10773-10786 (2018). doi: 10.1364/OE.26.010773
[9] Blinder, D. & Shimobaba, T. Efficient algorithms for the accurate propagation of extreme-resolution holograms. Optics Express 27, 29905-29915 (2019). doi: 10.1364/OE.27.029905
[10] Takaki, Y. & Nakaoka, M. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography. Optics Express 24, 18772-18781 (2016). doi: 10.1364/OE.24.018772
[11] Jeong, T. H. Cylindrical Holography and Some Proposed Applications. Journal of the Optical Society of America 57, 1396-1398 (1967). doi: 10.1364/JOSA.57.001396
[12] Soares, O. D. D. & Fernandes, J. C. A. Cylindrical hologram of 360° field of view. Applied Optics 21, 3194-3196 (1982). doi: 10.1364/AO.21.003194
[13] Sakamoto, Y. & Tobise, M. Computer-generated cylindrical hologram. Proceedings of the SPIE 5742 Practical Holography XIX: Materials and Applications. San Jose: SPIE, 2005, 260-273.
[14] Yamaguchi, T., Fujii, T. & Yoshikawa, H. Fast calculation method for computer-generated cylindrical holograms. Applied Optics 47, D63-D70 (2008). doi: 10.1364/AO.47.000D63
[15] Sando, Y. et al. Spherical-harmonic-transform-based fast calculation algorithm for spherical computer-generated hologram considering occlusion culling. Applied Optics 57, 6781-6787 (2018). doi: 10.1364/AO.57.006781
[16] Li, G. et al. Acceleration method for computer generated spherical hologram calculation of real objects using graphics processing unit. Chinese Optics Letters 12, 060016 (2014). doi: 10.3788/COL201412.060016
[17] Li, G. et al. Synthesis of computer-generated spherical hologram of real object with 360° field of view using a depth camera. Applied Optics 52, 3567-3575 (2013). doi: 10.1364/AO.52.003567
[18] Sando, Y. et al. Super-wide viewing-zone holographic 3D display using a convex parabolic mirror. Scientific Reports 8, 11333 (2018). doi: 10.1038/s41598-018-29798-5
[19] Sando, Y. et al. Fast calculation method for parabolic-mirror-reflection holographic 3D display using wavefront segmentation. Applied Optics 59, 8211-8216 (2020). doi: 10.1364/AO.401770
[20] Mishina, T., Okui, M. & Okano, F. Viewing-zone enlargement method for sampled hologram that uses high-order diffraction. Applied Optics 41, 1489-1499 (2002). doi: 10.1364/AO.41.001489
[21] Sasaki, H. et al. Image size scalable full-parallax coloured three-dimensional video by electronic holography. Scientific Reports 4, 4000 (2014). doi: 10.1038/srep04000
[22] Duan, X. et al. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box. Optics Express 28, 31316-31329 (2020). doi: 10.1364/OE.399359
[23] Su, Y. F. et al. Binocular dynamic holographic three-dimensional display for optical see-through augmented reality using two spatial light modulators. Optik 217, 164918 (2020). doi: 10.1016/j.ijleo.2020.164918
[24] Stanley, M. et al. 100 mega-pixel computer generated holographic images from active tiling–a dynamic and scalable electro-optic modulator system. Proceedings of the SPIE 5005 Practical Holography XVⅡ and Holographic Materials IX. Santa Clara: SPIE, 2003, 247-258.
[25] Lim, Y. et al. 360-degree tabletop electronic holographic display. Optics Express 24, 24999-25009 (2016). doi: 10.1364/OE.24.024999
[26] Ulusoy, E., Onural, L. & Ozaktas, H. M. Full-complex amplitude modulation with binary spatial light modulators. Journal of the Optical Society of America A 28, 2310-2321 (2011).
[27] Zhu, L. & Wang, J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Scientific Reports 4, 7441 (2014).
[28] Park, S. et al. Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator. Optics Express 25, 3469-3480 (2017). doi: 10.1364/OE.25.003469
[29] Hecht, E. Optics. (Boston: Addison Wesley, 2001).
[30] Bertsekas, D. P. Constrained Optimization And Lagrange Multiplier Methods. (New York: Academic Press, 1982).
[31] Butt, R. Introduction to Numerical Analysis Using MATLAB. (Hingham: Infinity Science Press 2007).