[1] |
Xu, X. W. et al. Light management of metal halide scintillators for high-resolution X-ray imaging. Advanced Materials 36, 2303738 (2024). doi: 10.1002/adma.202303738 |
[2] |
Withers, P. J. et al. X-ray computed tomography. Nature Reviews Methods Primers 1, 18 (2021). doi: 10.1038/s43586-021-00015-4 |
[3] |
Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). |
[4] |
Wang, Y. M. et al. Perovskite scintillators for improved X-ray detection and imaging. Angewandte Chemie International Edition 62, e202304638 (2023). |
[5] |
Wang, Y. Z. et al. Efficient X-ray luminescence imaging with ultrastable and eco-friendly copper(I)-iodide cluster microcubes. Light: Science & Applications 12, 155 (2023). |
[6] |
Zhang, F. et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Advanced Materials 34, 2204801 (2022). |
[7] |
Chen, B. et al. Multiexcitonic emission in zero-dimensional Cs2ZrCl6: Sb3+ perovskite crystals. Journal of the American Chemical Society 143, 17599-17606 (2021). doi: 10.1021/jacs.1c07537 |
[8] |
Zhao, S. Y. et al. Solvent-free synthesis of inorganic rubidium copper halides for efficient wireless light communication and X-ray imaging. Advanced Functional Materials 33, 2305858 (2023). |
[9] |
Li, N. et al. Flexible, high scintillation yield Cu3Cu2I5 film made of ball-milled powder for high spatial resolution X-ray imaging. Advanced Functional Materials 10, 2102232 (2022). |
[10] |
Wang, Q. et al. Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Advanced Optical Materials 10, 2200304 (2022). doi: 10.1002/adom.202200304 |
[11] |
Zhou, Y. C. et al. Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation. Inorganic Chemistry Frontiers 9, 2987-2996 (2022). doi: 10.1039/D2QI00461E |
[12] |
Luo, J. J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541-545 (2018). |
[13] |
Zhu, W. J. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Science & Applications 9, 112 (2020). |
[14] |
Dong, K. L. et al. Perovskite-like silver halide single-crystal microbelt enables ultrasensitive flexible X-ray detectors. ACS Nano 17, 1495-1504 (2023). doi: 10.1021/acsnano.2c10318 |
[15] |
Zhang, Z. X. et al. Lead-free bright yellow emissive Rb2AgCl3 scintillators with nanosecond radioluminescence. Journal of Luminescence 241, 118500 (2022). doi: 10.1016/j.jlumin.2021.118500 |
[16] |
Zhou, Q. et al. Low-dimensional metal halide for high performance scintillators. Advanced Optical Materials 34, 2402902 (2024). |
[17] |
Zheng, B. Z. et al. Rare-earth doping in nanostructured inorganic materials. Chemical Reviews 122, 5519-5603 (2022). doi: 10.1021/acs.chemrev.1c00644 |
[18] |
Suo, H. et al. Excitation-mode-selective emission through multiexcitonic states in a double perovskite single crystal. Light: Science & Applications 14, 21 (2025). |
[19] |
Yang, T., Wang, Y. K. & Liao, L. S. Trivalent rare earth ion-doped metal halide perovskite near-infrared semiconductors for high-performance optoelectronic devices. Advanced Functional Materials 35, 2420021 (2025). |
[20] |
Ma, W. B. et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Advanced Science 8, 2003728 (2021). |
[21] |
Montanarella, F. et al. Highly concentrated, zwitterionic ligand-capped Mn2+: CsPb(BrxCl1–x)3 nanocrystals as bright scintillators for fast neutron imaging. ACS Energy Letters 6, 4365-4373 (2021). doi: 10.1021/acsenergylett.1c01923 |
[22] |
Zhou, W. et al. Sb‐doped Cs3TbCl6 nanocrystals for highly efficient narrow‐band green emission and X‐ray imaging. Advanced Materials 36, 2302140 (2024). doi: 10.1002/adma.202302140 |
[23] |
Li, H. et al. Lanthanide-based metal halides prepared at room temperature by recrystallization method for X-ray imaging. Light: Science & Applications 14, 195 (2025). |
[24] |
Ward-O’Brien, B. et al. Synthesis of high entropy lanthanide oxysulfides via the thermolysis of a molecular precursor cocktail. Journal of the American Chemical Society 143, 21560-21566 (2021). |
[25] |
Wood, C. H. & Schaak, R. E. Synthetic roadmap to a large library of colloidal high-entropy rare earth oxyhalide nanoparticles containing up to thirteen metals. Journal of the American Chemical Society 146, 18730-18742 (2024). doi: 10.1021/jacs.4c06413 |
[26] |
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32, 751-767 (1976). |
[27] |
Wang, F. & Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Accounts of Chemical Research 47, 1378-1385 (2014). doi: 10.1021/ar5000067 |
[28] |
Han, K. et al. Hybrid Eu(II)-bromide scintillators with efficient 5d-4f bandgap transition for X-ray imaging. Light: Science & Applications 13, 222 (2024). |
[29] |
Chen, J. K. et al. Ultrafast and multicolor luminescence switching in a lanthanide-based hydrochromic perovskite. Journal of the American Chemical Society 144, 22295-22301 (2022). doi: 10.1021/jacs.2c10809 |