[1] Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014). doi: 10.1038/nphoton.2014.248
[2] Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behavior in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003). doi: 10.1038/nature01936
[3] Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Inc., Hoboken, NJ, 2006).
[4] Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014). doi: 10.1103/PhysRevLett.113.087403
[5] Yuan, L. Q. et al. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018). doi: 10.1364/OPTICA.5.001396
[6] Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019). doi: 10.1038/s42254-019-0045-3
[7] Boada, O. et al. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012). doi: 10.1103/PhysRevLett.108.133001
[8] Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014). doi: 10.1103/PhysRevLett.112.043001
[9] Yuan, L. Q., Shi, Y. & Fan, S. H. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016). doi: 10.1364/OL.41.000741
[10] Ozawa, T. et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016). doi: 10.1103/PhysRevA.93.043827
[11] Martin, I., Refael, G. & Halperin, B. Topological frequency conversion in strongly driven quantum systems. Phys. Rev. X 7, 041008 (2017).
[12] Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012). doi: 10.1038/nature11298
[13] Stuhl, B. K. et al. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1517 (2015). doi: 10.1126/science.aaa8515
[14] Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015). doi: 10.1126/science.aaa8736
[15] Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019). doi: 10.1038/s41586-019-0943-7
[16] Maczewsky, L. J. et al. Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices. Nat. Photonics 14, 76–81 (2020).
[17] Casanova, J. et al. Quantum simulation of interacting fermion lattice models in trapped ions. Phys. Rev. Lett. 108, 190502 (2012). doi: 10.1103/PhysRevLett.108.190502
[18] Graß, T. et al. Synthetic magnetic fluxes and topological order in one-dimensional spin systems. Phys. Rev. A 91, 063612 (2015). doi: 10.1103/PhysRevA.91.063612
[19] Yuan, L. Q. et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation. Phys. Rev. B 97, 104105 (2018). doi: 10.1103/PhysRevB.97.104105
[20] Dutt, A., Minkov, M. & Fan, S. H. Higher-order topological insulators in synthetic dimensions. Preprint at arXiv: 1911.11310 (2019).
[21] Artyukhov, V. I., Penev, E. S. & Yakobson, B. I. Why nanotubes grow chiral. Nat. Commun. 5, 4892 (2014). doi: 10.1038/ncomms5892
[22] Bell, B. A. et al. Spectral photonic lattices with complex long-range coupling. Optica 4, 1433–1436 (2017). doi: 10.1364/OPTICA.4.001433
[23] Qin, C. Z. et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett. 120, 133901 (2018). doi: 10.1103/PhysRevLett.120.133901
[24] Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photonics 13, 339–345 (2019). doi: 10.1038/s41566-019-0370-1
[25] Lin, Q. & Fan, S. H. Light guiding by effective gauge field for photons. Phys. Rev. X 4, 031031 (2014).
[26] Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018). doi: 10.1126/science.aar4003
[27] Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018). doi: 10.1126/science.aar4005
[28] Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020). doi: 10.1126/science.aaz3071
[29] Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the "parity anomaly". Phys. Rev. Lett. 61, 2015–2018 (1988). doi: 10.1103/PhysRevLett.61.2015
[30] Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics 4, 41–45 (2010). doi: 10.1038/nphoton.2009.236
[31] Dutt, A. et al. Experimental demonstration of dynamical input isolation in nonadiabatically modulated photonic cavities. ACS Photonics 6, 162–169 (2019). doi: 10.1021/acsphotonics.8b01310
[32] Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, 3122 (2019). doi: 10.1038/s41467-019-11117-9
[33] Reimer, C. et al. High-dimensional frequency crystals and quantum walks in electro-optic microcombs. Preprint at arXiv: 1909.01303 (2019).
[34] Bersch, C., Onishchukov, G. & Peschel, U. Experimental observation of spectral Bloch oscillations. Opt. Lett. 34, 2372–2374 (2009). doi: 10.1364/OL.34.002372
[35] Kang, M. S. et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys. 5, 276–280 (2009). doi: 10.1038/nphys1217
[36] Wolff, C. et al. Cascaded forward Brillouin scattering to all Stokes orders. N. J. Phys. 19, 023021 (2017). doi: 10.1088/1367-2630/aa599e
[37] Eggleton, B. J. et al. Brillouin integrated photonics. Nat. Photonics 13, 664–677 (2019). doi: 10.1038/s41566-019-0498-z
[38] Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016). doi: 10.1126/science.aad8532
[39] Perets, H. B. et al. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008). doi: 10.1103/PhysRevLett.100.170506
[40] Thurston, W. P. Three-Dimensional Geometry and Topology (Princeton University Press, Princeton, 1997).
[41] Weeks, J. R. The Shape of Space. 2nd edn (CRC Press, Boca Raton London, 2001).
[42] Eichelkraut, T. et al. Coherent random walks in free space. Optica 1, 268–271 (2014). doi: 10.1364/OPTICA.1.000268
[43] Titchener, J. G. et al. Synthetic photonic lattice for single-shot reconstruction of frequency combs. APL Photonics 5, 030805 (2020). doi: 10.1063/1.5144119
[44] Wang, K. et al. Non-reciprocal geometric phase in nonlinear frequency conversion. Opt. Lett. 42, 1990–1993 (2017). doi: 10.1364/OL.42.001990
[45] Shi, Y., Yu, Z. F. & Fan, S. H. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics 9, 388–392 (2015). doi: 10.1038/nphoton.2015.79
[46] Jukić, D. & Buljan, H. Four-dimensional photonic lattices and discrete tesseract solitons. Phys. Rev. A 87, 013814 (2013). doi: 10.1103/PhysRevA.87.013814
[47] Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[48] Longhi, S. Synthetic gauge fields for light beams in optical resonators. Opt. Lett. 40, 2941–2944 (2015). doi: 10.1364/OL.40.002941