[1] |
Rolland, J. P. et al. Freeform optics for imaging. Optica 8, 161-176 (2021). doi: 10.1364/OPTICA.413762 |
[2] |
Bauer, A., Schiesser, E. M. & Rolland, J. P. Starting geometry creation and design method for freeform optics. Nature Communications 9, 1756 (2018). doi: 10.1038/s41467-018-04186-9 |
[3] |
Fuerschbach, K. et al. Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors. Optics Letters 39, 2896-2899 (2014). doi: 10.1364/OL.39.002896 |
[4] |
Reimers, J. et al. Freeform spectrometer enabling increased compactness. Light: Science & Applications 6, e17026 (2017). |
[5] |
Geyl, R. et al. Freeform optics design, fabrication and testing technologies for Space applications. Proceedings of SPIE 11180, International Conference on Space Optics — ICSO 2018. Chania, Greece: SPIE, 2019, 111800P. |
[6] |
Schiesser, E. M., Bauer, A. & Rolland, J. P. Effect of freeform surfaces on the volume and performance of unobscured three mirror imagers in comparison with off-axis rotationally symmetric polynomials. Optics Express 27, 21750-21765 (2019). doi: 10.1364/OE.27.021750 |
[7] |
Wu, R. M. et al. Design of freeform illumination optics. Laser & Photonics Reviews 12, 1700310 (2018). |
[8] |
Yang, L. et al. Freeform optical design of beam shaping systems with variable illumination properties. Optics Express 29, 31993-32005 (2021). doi: 10.1364/OE.436340 |
[9] |
Falaggis, K. et al. Freeform optics: introduction. Optics Express 30, 6450-6455 (2022). doi: 10.1364/OE.454788 |
[10] |
Scheiding, S. et al. Ultra-precisely manufactured mirror assemblies with well-defined reference structures. Proceedings of SPIE 7739, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation. San Diego, CA, USA: SPIE, 2010, 773908. |
[11] |
Brunelle, M. et al. Importance of fiducials on freeform optics. Proceedings of SPIE 9633, Optifab 2015. Rochester, New York, USA: SPIE, 2015, 325-332. |
[12] |
Mishra, V. et al. Freeform optics alignment strategy and its effect on development of precision freeform optics. Proceedings of SPIE 11056, Optical Measurement Systems for Industrial Inspection XI. Munich, Germany: SPIE, 2019, 1117-1124. |
[13] |
Wolfs, F. et al. Challenges and best practices for manufacturing freeform optics. Proceedings of SPIE 11889, Optifab 2021. Rochester, New York, USA: SPIE, 2021, 111-117. |
[14] |
Gronle, A., Pruss, C. & Herkommer, A. Misalignment of spheres, aspheres and freeforms in optical measurement systems. Optics Express 30, 797-814 (2022). doi: 10.1364/OE.443420 |
[15] |
Slocum, A. H. Kinematic couplings for precision fixturing—Part I: formulation of design parameters. Precision Engineering 10, 85-91 (1988). doi: 10.1016/0141-6359(88)90005-0 |
[16] |
Slocum, A. H. Design of three-groove kinematic couplings. Precision Engineering 14, 67-76 (1992). doi: 10.1016/0141-6359(92)90051-W |
[17] |
Li, Y. D. & Gu, P. H. Free-form surface inspection techniques state of the art review. Computer-Aided Design 36, 1395-1417 (2004). doi: 10.1016/j.cad.2004.02.009 |
[18] |
Zhu, L. et al. Efficient registration for precision inspection of free-form surfaces. The International Journal of Advanced Manufacturing Technology 32, 505-515 (2007). doi: 10.1007/s00170-005-0370-9 |
[19] |
Savio, E., De Chiffre, L. & Schmitt, R. Metrology of freeform shaped parts. CIRP Annals 56, 810-835 (2007). doi: 10.1016/j.cirp.2007.10.008 |
[20] |
Kong, L. B. et al. Measuring optical freeform surfaces using a coupled reference data method. Measurement Science and Technology 18, 2252-2260 (2007). doi: 10.1088/0957-0233/18/7/060 |
[21] |
Slocum, A. Kinematic couplings: a review of design principles and applications. International Journal of Machine Tools and Manufacture 50, 310-327 (2010). doi: 10.1016/j.ijmachtools.2009.10.006 |
[22] |
Beier, M. et al. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF). Proceedings of SPIE 8884, Optifab 2013. Rochester, New York, USA: SPIE, 2013, 139-152. |
[23] |
Scheiding, S. et al. Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features. Proceedings of 8613, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI. San Francisco, CA, USA: SPIE, 2013, 76-90. |
[24] |
Fang, F. Z. et al. Manufacturing and measurement of freeform optics. CIRP Annals 62, 823-846 (2013). doi: 10.1016/j.cirp.2013.05.003 |
[25] |
Beier, M. et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope. Applied Optics 54, 3530-3542 (2015). doi: 10.1364/AO.54.003530 |
[26] |
Blalock, T. , Medicus, K. & Nelson, J. D. Fabrication of freeform optics. Proceedings of 9575, Optical Manufacturing and Testing XI. San Diego, CA, USA: SPIE, 2015, 74-83. |
[27] |
Youngworth, R. N., Kiontke, S. R. & Aikens, D. M. Implementing ISO standard-compliant freeform component drawings. Optical Engineering 55, 071205 (2016). doi: 10.1117/1.OE.55.7.071205 |
[28] |
Horvath, N. W., Davies, M. A. & Patterson, S. R. Kinematic mirror mount design for ultra-precision manufacturing, metrology, and system level integration for high performance visible spectrum imaging systems. Precision Engineering 60, 535-543 (2019). doi: 10.1016/j.precisioneng.2019.09.011 |
[29] |
Williamson, R. Beyond centration: how to create, read, and use a datum system per ISO-10110-6 (2015). Proceedings of SPIE 11175, Optifab 2019. Rochester, New York, USA: SPIE, 2019, 274-280. |
[30] |
Horvath, N. W. & Davies, M. A. Concurrent engineering of a next-generation freeform telescope: mechanical design and manufacture. Proceedings of SPIE 10998, Advanced Optics for Imaging Applications: UV through LWIR IV. Baltimore, MD, USA: SPIE, 2019, 140-147. |
[31] |
Nikolov, D. K. et al. Metaform optics: bridging nanophotonics and freeform optics. Science Advances 7, eabe5112 (2021). doi: 10.1126/sciadv.abe5112 |
[32] |
Xie, Y. J. et al. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope. Applied Optics 59, 833-840 (2020). doi: 10.1364/AO.379324 |
[33] |
Fan, Y. W. Numerical Calculation of Zernike Polynomials and the Sample Selection Method of NURBS Spline Generation. (Rochester: University of Rochester, 2020). |
[34] |
Murphy, T. The Intermediate Precision of ASTM International Test Methods. https://www.astm.org/news/intermediate-precision-astm-international-test-methods-nd10 (2010). |
[35] |
Piegl, L. & Tiller, W. The NURBS Book. (Berlin: Springer, 1997). |