[1] Lin, Y. H. et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals. Applied Physics Letters 96, 113505 (2010). doi: 10.1063/1.3360860
[2] Ren, H. W. et al. Tunable-focus flat liquid crystal spherical lens. Applied Physics Letters 84, 4789-4791 (2004). doi: 10.1063/1.1760226
[3] Sun, C. L. & Lu, J. G. A polarization-independent blue phase liquid crystal on silicon with low operation voltage. Scientific Reports 9, 16900 (2019). doi: 10.1038/s41598-019-53344-6
[4] Lin, Y. H. et al. Tunable-focus cylindrical liquid crystal lenses. Japanese Journal of Applied Physics 44, 243-244 (2005). doi: 10.1143/JJAP.44.243
[5] Wu, L. et al. Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays. Chinese Optics Letters 15, 101601 (2017). doi: 10.3788/COL201715.101601
[6] Sun, C. L. et al. High-efficiency beam steering LCOS for wavelength selective switch. IEEE Photonics Technology Letters 30, 1683-1686 (2018). doi: 10.1109/LPT.2018.2866283
[7] Dai, H. T. et al. Characteristics of LCoS Phase-only spatial light modulator and its applications. Optics Communications 238, 269-276 (2004). doi: 10.1016/j.optcom.2004.04.047
[8] Xiang, J. et al. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics. Advanced Materials 27, 3014-3018 (2015). doi: 10.1002/adma.201500340
[9] Chen, C. W. et al. Bistable light-driven π phase switching using a twisted nematic liquid crystal film. Optics Express 22, 12133-12138 (2014). doi: 10.1364/OE.22.012133
[10] Lin, Y. H. & Tsou, Y. S. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals. Journal of Applied Physics 110, 114516 (2011). doi: 10.1063/1.3666053
[11] Kuo, C. T. et al. Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals. Optics Express 23, 26041-26048 (2015). doi: 10.1364/OE.23.026041
[12] Sun, X. Y. & Qiu, F. Polarization independent high-speed spatial modulators based on an electro-optic polymer and silicon hybrid metasurface. Photonics Research 10, 2893 (2022). doi: 10.1364/PRJ.476688
[13] Sun, P. Z. et al. Ultra-broadband holography in visible and infrared regions with full-polarization nondispersive response. Optics Letters 48, 3083-3086 (2023). doi: 10.1364/OL.488010
[14] Huang, Y. H., Wen, C. H. & Wu, S. T. Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal. Applied Physics Letters 89, 021103 (2006). doi: 10.1063/1.2219998
[15] Li, Y. et al. Polymer‐stabilized blue phase liquid crystals for photonic applications. Advanced Materials Technologies 1, 1600102 (2016). doi: 10.1002/admt.201600102
[16] Manda, R. et al. Polymer‐stabilized monodomain blue phase diffraction grating. Advanced Materials Interfaces 7, 1901923 (2020). doi: 10.1002/admi.201901923
[17] Castles, F. et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nature Materials 11, 599-603 (2012). doi: 10.1038/nmat3330
[18] Li, Y. & Wu, S. T. Polarization independent adaptive microlens with a blue-phase liquid crystal. Optics Express 19, 8045-8050 (2011). doi: 10.1364/OE.19.008045
[19] Lin, Y. H. et al. Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure. Optics Express 13, 8746-8752 (2005). doi: 10.1364/OPEX.13.008746
[20] He, Z. Q. et al. Polarization-independent phase modulators enabled by two-photon polymerization. Optics Express 25, 33688-33694 (2017). doi: 10.1364/OE.25.033688
[21] Hu, W. et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments. Applied Physics Letters 100, 111116 (2012). doi: 10.1063/1.3694921
[22] Hu, W. et al. Liquid crystal gratings based on alternate TN and PA photoalignment. Optics Express 20, 5384-5391 (2012). doi: 10.1364/OE.20.005384
[23] Lin, Y. H. et al. Electrically tunable polarization independent liquid crystal lenses based on orthogonally anisotropic orientations on adjacent micro-domains. Optics Express 29, 29215-29227 (2021). doi: 10.1364/OE.438398
[24] Dolganov, P. V. et al. Description of optical properties of cholesteric photonic liquid crystals based on Maxwell equations and Kramers-Kronig relations. Physical Review E 87, 032506 (2013).