[1] Heck, M. J. R. , Bauters, J. F. , Davenport, M. L. , Spencer, D. T. & Bowers, J. E. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev. 8, 667–686 (2014). doi: 10.1002/lpor.201300183
[2] Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401–412 (2005). doi: 10.1109/JLT.2004.834471
[3] Horikawa, T. , Shimura, D. & Mogami, T. Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6, 9–15 (2016). doi: 10.1557/mrc.2015.84
[4] Ziebell, M. et al. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt. Express 20, 10591–10596 (2012). doi: 10.1364/OE.20.010591
[5] Davenport, M. L. et al. Heterogeneous Silicon/Ⅲ-Ⅴ Semiconductor Optical Amplifiers. IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016). http://ieeexplore.ieee.org/document/7516667/citations
[6] Leuthold, J. et al. Silicon-organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013). doi: 10.1109/JSTQE.2013.2271846
[7] Deri, R. J. & Kapon, E. Low-loss Ⅲ-Ⅴ semiconductor optical waveguides. IEEE J. Quantum Electron. 27, 626–640 (1991). doi: 10.1109/3.81372
[8] Mateus, C. F. R. & Huang, M. C. Y. Yunfei Deng, Neureuther, A. R. & Chang-Hasnain, C. J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technol. Lett. 16, 518–520 (2004). doi: 10.1109/LPT.2003.821258
[9] Huang, M. C. Y. , Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 1, 119–122 (2007). doi: 10.1038/nphoton.2006.80
[10] Lawrie, J. L., Weiss, S. M. & Weiss, S. M. In Silicon Photonics for Telecommunications and Biomedicine (eds. Fathpour, S. & Jalali, B. ) 219–248 (CRC Press, Boca Raton, 2016).
[11] Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 1–14, https://doi.org/10.1038/s41566-020-0609-x (2020).
[12] Wang, J. , Sciarrino, F. , Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020). doi: 10.1038/s41566-019-0532-1
[13] Vivien, L. & Pavesi, L. Handbook of Silicon Photonics (Taylor & Francis, 2016).
[14] Reed, G. T. et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 3, 229–245 (2014). doi: 10.1515/nanoph-2013-0016
[15] Tengattini, A. et al. Toward a 1.54 μm electrically driven erbium-doped silicon slot waveguide and optical amplifier. J. Lightwave Technol. 31, 391–397 (2013). doi: 10.1109/JLT.2012.2231050
[16] Xia, F. , Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nat. Photonics 1, 65–71 (2007). doi: 10.1038/nphoton.2006.42
[17] Griffith, A. , Cardenas, J. , Poitras, C. B. & Lipson, M. High quality factor and high confinement silicon resonators using etchless process. Opt. Express 20, 21341–21345 (2012). doi: 10.1364/OE.20.021341
[18] Vlasov, Y. A. & McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004). doi: 10.1364/OPEX.12.001622
[19] Harke, A. , Krause, M. & Mueller, J. Low-loss singlemode amorphous silicon waveguides. Electron. Lett. 41, 1377–1379 (2005). doi: 10.1049/el:20052387
[20] Sparacin, D. K. , Spector, S. J. & Kimerling, L. C. Silicon waveguide sidewall smoothing by wet chemical oxidation. J. Lightwave Technol. 23, 2455 (2005). doi: 10.1109/JLT.2005.851328
[21] Gnan, M. , Thoms, S. , Macintyre, D. S. , Rue, R. M. D. L. & Sorel, M. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115–116 (2008). doi: 10.1049/el:20082985
[22] Cardenas, J. et al. Low loss etchless silicon photonic waveguides. Opt. Express 17, 4752–4757 (2009). doi: 10.1364/OE.17.004752
[23] Bojko, R. J. et al. Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides. J. Vac. Sci. Technol. B 29, 06F309 (2011). doi: 10.1116/1.3653266
[24] Feilchenfeld, N. B. et al. An integrated silicon photonics technology for O-band datacom. In 2015 IEEE International Electron Devices Meeting (IEDM) 25.7.1–25.7.4 (IEEE, Washington, 2015).
[25] Marcatili, Ea. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964). doi: 10.1002/j.1538-7305.1964.tb04108.x
[26] Kaminow, I. P. , Mammel, W. L. & Weber, H. P. Metal-clad optical waveguides: analytical and experimental study. Appl. Opt. 13, 396–405 (1974). doi: 10.1364/AO.13.000396
[27] Lončar, M. , Doll, T. , Vučković, J. & Scherer, A. Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 18, 1402 (2000). doi: 10.1109/50.887192
[28] Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001). doi: 10.1103/PhysRevLett.87.253902
[29] Chang-Hasnain, C. J. High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26, 014043 (2010).
[30] Lalanne, P. , Hugonin, J. P. & Chavel, P. Optical properties of deep lamellar gratings: a coupled Bloch-mode insight. J. Lightwave Technol. 24, 2442–2449 (2006). doi: 10.1109/JLT.2006.874555
[31] Karagodsky, V. & Chang-Hasnain, C. J. Physics of near-wavelength high contrast gratings. Opt. Express 20, 10888–10895 (2012). doi: 10.1364/OE.20.010888
[32] Cheben, P. , Halir, R. , Schmid, J. H. , Atwater, H. A. & Smith, D. R. Subwavelength integrated photonics. Nature 560, 565–572 (2018). doi: 10.1038/s41586-018-0421-7
[33] Zhou, Y. , Karagodsky, V. , Pesala, B. , Sedgwick, F. G. & Chang-Hasnain, C. J. A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. Opt. Express 17, 1508–1517 (2009). doi: 10.1364/OE.17.001508
[34] Yang, W. et al. Low loss hollow-core waveguide on a silicon substrate. Nanophotonics 1, 23–29 (2012). doi: 10.1515/nanoph-2012-0003
[35] Stöferle, T. et al. Ultracompact silicon/polymer laser with an absorption-insensitive nanophotonic resonator. Nano Lett. 10, 3675–3678 (2010). doi: 10.1021/nl102149y
[36] Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photonics 13, 378–383 (2019). doi: 10.1038/s41566-019-0392-8
[37] Liu, V. & Fan, S. S4: A free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233–2244 (2012). doi: 10.1016/j.cpc.2012.04.026
[38] Oskooi, A. F. et al. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010). doi: 10.1016/j.cpc.2009.11.008
[39] Lumerical Inc. FDTD 3D Electromagnetic Simulator. https://www.lumerical.com/products/ (2020).