[1] |
Soref, R. Silicon photonics: a review of recent literature. Silicon 2, 1-6 (2010). doi: 10.1007/s12633-010-9034-y |
[2] |
Thylén, L. & Wosinski, L. Integrated photonics in the 21st century. Photonics Research 2, 75-81 (2014). doi: 10.1364/PRJ.2.000075 |
[3] |
Liang, D. & Bowers, J. E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light:Advanced Manufacturing 2, 5 (2021). doi: 10.37188/lam.2021.005 |
[4] |
Lin, H. T. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7, 393-420 (2017). doi: 10.1515/nanoph-2017-0085 |
[5] |
Wang, J. & Long, Y. On-chip silicon photonic signaling and processing: a review. Science Bulletin 63, 1267-1310 (2018). doi: 10.1016/j.scib.2018.05.038 |
[6] |
Li, N. X. et al. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser & Photonics Reviews 16, 2100511 (2022). doi: 10.1002/lpor.202100511 |
[7] |
Passaro, V. M. N. et al. Recent advances in integrated photonic sensors. Sensors 12, 15558-15598 (2012). doi: 10.3390/s121115558 |
[8] |
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics 15, 102-114 (2021). doi: 10.1038/s41566-020-00754-y |
[9] |
Kita, D. M. et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications 9, 4405 (2018). doi: 10.1038/s41467-018-06773-2 |
[10] |
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nature Reviews Physics 4, 194-208 (2022). doi: 10.1038/s42254-021-00398-z |
[11] |
Cheben, P. et al. Subwavelength integrated photonics. Nature 560, 565-572 (2018). doi: 10.1038/s41586-018-0421-7 |
[12] |
Siew, S. Y. et al. Review of silicon photonics technology and platform development. Journal of Lightwave Technology 39, 4374-4389 (2021). doi: 10.1109/JLT.2021.3066203 |
[13] |
Ranno, L. et al. Integrated photonics packaging: challenges and opportunities. ACS Photonics 9, 3467-3485 (2022). doi: 10.1021/acsphotonics.2c00891 |
[14] |
Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Applied Sciences 6, 426 (2016). doi: 10.3390/app6120426 |
[15] |
Marchetti, R. et al. Coupling strategies for silicon photonics integrated chips [Invited]. Photonics Research 7, 201-239 (2019). doi: 10.1364/PRJ.7.000201 |
[16] |
Pavarelli, N. et al. Optical and electronic packaging processes for silicon photonic systems. Journal of Lightwave Technology 33, 991-997 (2015). doi: 10.1109/JLT.2015.2390675 |
[17] |
Lee, J. S. et al. Meeting the electrical, optical, and thermal design challenges of photonic-packaging. IEEE Journal of Selected Topics in Quantum Electronics 22, 8200209 (2016). doi: 10.1109/JSTQE.2016.2543150 |
[18] |
Li, L. et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. Journal of Lightwave Technology 31, 4080-4086 (2013). doi: 10.1109/JLT.2013.2285382 |
[19] |
Nezami, M. S. et al. Packaging and interconnect considerations in neuromorphic photonic accelerators. IEEE Journal of Selected Topics in Quantum Electronics 29, 6100311 (2023). doi: 10.1109/JSTQE.2022.3200604 |
[20] |
Mahajan, R. et al. Co-packaged photonics for high performance computing: status, challenges and opportunities. Journal of Lightwave Technology 40, 379-392 (2022). doi: 10.1109/JLT.2021.3104725 |
[21] |
Kopp, C. et al. Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging. IEEE Journal of Selected Topics in Quantum Electronics 17, 498-509 (2011). doi: 10.1109/JSTQE.2010.2071855 |
[22] |
Barwicz, T. et al. Automated, high-throughput photonic packaging. Optical Fiber Technology 44, 24-35 (2018). doi: 10.1016/j.yofte.2018.02.019 |
[23] |
Zhao, Y., Lin, L. H. & Sun, H. B. On-chip optical interconnection based on two-photon polymerization (Invited). Acta Photonica Sinica 51, 0851512 (2022). doi: 10.3788/gzxb20225108.0851512 |
[24] |
Liu, S. F. et al. 3D laser nanoprinting of functional materials. Advanced Functional Materials 2211280,doi: 10.1002/adfm.202211280 (in the press). doi: 10.1002/adfm.202211280 |
[25] |
Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134 (1997). doi: 10.1364/OL.22.000132 |
[26] |
Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Optics Express 20, 17667-17677 (2012). doi: 10.1364/OE.20.017667 |
[27] |
Adão, R. M. R. et al. Two-photon polymerization simulation and fabrication of 3D microprinted suspended waveguides for on-chip optical interconnects. Optics Express 30, 9623-9642 (2022). doi: 10.1364/OE.449641 |
[28] |
Lee, C. W. et al. Perpendicular coupling to in-plane photonics using arc waveguides fabricated via two-photon polymerization. Applied Physics Letters 100, 171102 (2012). doi: 10.1063/1.4704358 |
[29] |
Klein, S. et al. One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption. Applied Physics Letters 86, 211118 (2005). doi: 10.1063/1.1915525 |
[30] |
Schmidt, V. et al. Two-photon 3D lithography: A versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications. Journal of Laser Micro/Nanoengineering 2, 170-177 (2007). doi: 10.2961/jlmn.2007.03.0002 |
[31] |
Ishihara, J. et al. Fabrication of three-dimensional calixarene polymer waveguides using two-photon assisted polymerization. Applied Physics Letters 90, 033511 (2007). doi: 10.1063/1.2430480 |
[32] |
Schmid, G. et al. Gbit/s transmission via two-photon-absorption-inscribed optical waveguides on printed circuit boards. Electronics Letters 45, 219-221 (2009). doi: 10.1049/el:20093661 |
[33] |
Seidel, A. et al. Nanoimprinting of dielectric loaded surface-plasmon-polariton waveguides using masters fabricated by 2-photon polymerization technique. Journal of the Optical Society of America B 26, 810-812 (2009). doi: 10.1364/JOSAB.26.000810 |
[34] |
Serbin, J. & Gu, M. Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization. Optics Express 14, 3563-3568 (2006). doi: 10.1364/OE.14.003563 |
[35] |
Gonzalez‐Hernandez, D. et al. Micro-optics 3D printed via multi-photon laser lithography. Advanced Optical Materials 11, 2201701 (2023). doi: 10.1002/adom.202201701 |
[36] |
Moscoso-Martir, A. et al. Hybrid silicon photonics flip-chip laser integration with vertical self-alignment. 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). Singapore: IEEE, 2017, 1-4. doi: 10.1109/CLEOPR.2017.8118971 |
[37] |
Theurer, M. et al. Flip-chip integration of InP to SiN photonic integrated circuits. Journal of Lightwave Technology 38, 2630-2636 (2020). doi: 10.1109/JLT.2020.2972065 |
[38] |
Shimizu, T. et al. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection. 8th IEEE International Conference on Group IV Photonics. London: IEEE, 2011, 181-183. doi: 10.1109/GROUP4.2011.6053756 |
[39] |
Schmid, M. D. et al. 3D direct laser writing of highly absorptive photoresist for miniature optical apertures. Advanced Functional Materials, 2211159 (in the press). doi: 10.1002/adfm.202211159 |
[40] |
Schmid, M. et al. 3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range. Optics Letters 46, 2485-2488 (2021). doi: 10.1364/OL.423196 |
[41] |
Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4 |
[42] |
Weiß, T. et al. Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Advanced Engineering Materials 13, B264-B273 (2011). doi: 10.1002/adem.201080090 |
[43] |
Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express 2, 3167-3178 (2011). doi: 10.1364/BOE.2.003167 |
[44] |
O’Halloran, S. et al. Two-photon polymerization: fundamentals, materials, and chemical modification strategies. Advanced Science 10, 2204072 (2023). doi: 10.1002/advs.202204072 |
[45] |
Otuka, A. J. G. et al. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds. Polymers 13, 1994 (2021). doi: 10.3390/polym13121994 |
[46] |
Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nature Communications 9, 593 (2018). doi: 10.1038/s41467-018-03071-9 |
[47] |
Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nature Materials 20, 1491-1497 (2021). doi: 10.1038/s41563-021-01033-z |
[48] |
Sharipova, M. I. et al. Effect of pyrolysis on microstructures made of various photoresists by two-photon polymerization: comparative study. Optical Materials Express 11, 371-384 (2021). doi: 10.1364/OME.416457 |
[49] |
Hohmann, J. K. et al. Three-dimensional μ-printing: an enabling technology. Advanced Optical Materials 3, 1488-1507 (2015). doi: 10.1002/adom.201500328 |
[50] |
Li, Y. et al. UV to NIR optical properties of IP-Dip, IP-L, and IP-S after two-photon polymerization determined by spectroscopic ellipsometry. Optical Materials Express 9, 4318-4328 (2019). doi: 10.1364/OME.9.004318 |
[51] |
Bauer, J. et al. Thermal post-curing as an efficient strategy to eliminate process parameter sensitivity in the mechanical properties of two-photon polymerized materials. Optics Express 28, 20362-20371 (2020). doi: 10.1364/OE.395986 |
[52] |
Rohbeck, N. et al. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Materials & Design 195, 108977 (2020). doi: 10.1016/j.matdes.2020.108977 |
[53] |
Wang, S. H. et al. Sub-10-nm suspended nano-web formation by direct laser writing. Nano Futures 2, 025006 (2018). doi: 10.1088/2399-1984/aabb94 |
[54] |
Liu, Y. J. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nature Communications 10, 4340 (2019). doi: 10.1038/s41467-019-12360-w |
[55] |
Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express 9, 4564-4577 (2019). doi: 10.1364/OME.9.004564 |
[56] |
Rad, Z. F., Prewett, P. D. & Davies, G. J. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsystems & Nanoengineering 7, 71 (2021). doi: 10.1038/s41378-021-00298-3 |
[57] |
Gehring, H. et al. Broadband out-of-plane coupling at visible wavelengths. Optics Letters 44, 5089-5092 (2019). doi: 10.1364/OL.44.005089 |
[58] |
Yu, S. L. et al. Free-form micro-optics enabling ultra-broadband low-loss off-chip coupling. Laser & Photonics Reviews 17, 2200025 (2023). doi: 10.48550/arXiv.2112.14357 |
[59] |
Gissibl, T. et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763 |
[60] |
Hot Lithography® – UpNano – high-resolution 3D printing. at https://www.upnano.at/hot-lithography/. |
[61] |
Bunea, A. I. et al. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system. Micro 1, 164-180 (2021). doi: 10.3390/micro1020013 |
[62] |
Hasegawa, T. , Oishi, K. & Maruo, S. Three-dimensional microstructuring of PDMS by two-photon microstereolithography. 2006 IEEE International Symposium on MicroNanoMechanical and Human Science. Nagoya: IEEE, 2006, 1-4, doi: 10.1109/MHS.2006.320261. doi: 10.1109/MHS.2006.320261 |
[63] |
Panusa, G. et al. Fabrication of sub-micron polymer waveguides through two-photon polymerization in polydimethylsiloxane. Polymers 12, 2485 (2020). doi: 10.3390/polym12112485 |
[64] |
Murata, N. & Nakamura, K. UV-curable adhesives for optical communications. The Journal of Adhesion 35, 251-267 (1991). doi: 10.1080/00218469108041012 |
[65] |
Lorenz, H. et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators A:Physical 64, 33-39 (1998). doi: 10.1016/S0924-4247(98)80055-1 |
[66] |
Chen, M. H. et al. Low shrinkage light curable nanocomposite for dental restorative material. Dental Materials 22, 138-145 (2006). doi: 10.1016/j.dental.2005.02.012 |
[67] |
Teh, W. H. et al. Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. Journal of Applied Physics 97, 054907 (2005). doi: 10.1063/1.1856214 |
[68] |
Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Advanced Materials 24, 811-816 (2012). doi: 10.1002/adma.201103818 |
[69] |
Kumi, G. et al. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab on a Chip 10, 1057-1060 (2010). doi: 10.1039/b923377f |
[70] |
Streppel, U. et al. Formation of micro-optical structures by self-writing processes in photosensitive polymers. Applied Optics 42, 3570-3579 (2003). doi: 10.1364/AO.42.003570 |
[71] |
Maydykovskiy, A. I. et al. Two-photon laser lithography of active microcavity structures. JETP Letters 115, 261-266 (2022). doi: 10.1134/S0021364022100150 |
[72] |
Zuo, H. J. et al. Low loss, flexible single-mode polymer photonics. Optics Express 27, 11152-11159 (2019). doi: 10.1364/OE.27.011152 |
[73] |
Gonzalez-Hernandez, D. et al. Laser 3D printing of inorganic free-form micro-optics. Photonics 8, 577 (2021). doi: 10.3390/photonics8120577 |
[74] |
Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Advanced Materials 33, 2006341 (2021). doi: 10.1002/adma.202006341 |
[75] |
Kotz, F. et al. Liquid glass: a facile soft replication method for structuring glass. Advanced Materials 28, 4646-4650 (2016). doi: 10.1002/adma.201506089 |
[76] |
Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337-339 (2017). doi: 10.1038/nature22061 |
[77] |
Suter, M. et al. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility. Biomedical Microdevices 15, 997-1003 (2013). doi: 10.1007/s10544-013-9791-7 |
[78] |
Masui, K. et al. Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization. Optics Express 19, 22786-22796 (2011). doi: 10.1364/OE.19.022786 |
[79] |
Marino, A. et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces 7, 25574-25579 (2015). doi: 10.1021/acsami.5b08764 |
[80] |
Xing, J. F., Zheng, M. L. & Duan, X. M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews 44, 5031-5039 (2015). doi: 10.1039/C5CS00278H |
[81] |
Song, J. X. et al. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Advanced Healthcare Materials 9, 1901217 (2020). doi: 10.1002/adhm.201901217 |
[82] |
Xu, Y. A. et al. Deep ultraviolet hydrogel based on 2D cobalt-doped titanate. Light:Science & Applications 12, 1 (2023). doi: 10.1038/s41377-022-00991-6 |
[83] |
Ding, B. F. et al. A 2D material–based transparent hydrogel with engineerable interference colours. Nature Communications 13, 1212 (2022). doi: 10.1038/s41467-021-26587-z |
[84] |
Saccone, M. A. et al. Additive manufacturing of micro-architected metals via hydrogel infusion. Nature 612, 685-690 (2022). doi: 10.1038/s41586-022-05433-2 |
[85] |
Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281-1285 (2018). doi: 10.1126/science.aau5119 |
[86] |
Lu, X. M. et al. Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. Journal of Sol-Gel Science and Technology 95, 530-550 (2020). doi: 10.1007/s10971-020-05370-4 |
[87] |
Schwarz, C. M. et al. Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses. Proceedings of the SPIE 9759, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX. San Francisco: SPIE, 2016, 975916. doi:10.1117/12.2213030. doi: 10.1117/12.2213030 |
[88] |
Wong, S. et al. Direct laser writing of three- dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Advanced Materials 18, 265-269 (2006). doi: 10.1002/adma.200501973 |
[89] |
Cumming, B. P. et al. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. Optics Express 22, 689-698 (2014). doi: 10.1364/OE.22.000689 |
[90] |
Schwarz, C. M. et al. Structurally and morphologically engineered chalcogenide materials for optical and photonic devices. Journal of Optical Microsystems 1, 013502 (2021). doi: 10.1117/1.JOM.1.1.013502 |
[91] |
Zhang, Y. S. et al. Two-photon 3D printing in metal–organic framework single crystals. Small 18, 2200514 (2022). doi: 10.1002/smll.202200514 |
[92] |
Yu, J. C. et al. Two-photon responsive metal–organic framework. Journal of the American Chemical Society 137, 4026-4029 (2015). doi: 10.1021/ja512552g |
[93] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121 |
[94] |
Liu, Y. et al. Deformation behavior of foam laser targets fabricated by two-photon polymerization. Nanomaterials 8, 498 (2018). doi: 10.3390/nano8070498 |
[95] |
Rosenbohm, J. et al. A multi-material platform for imaging of single cell-cell junctions under tensile load fabricated with two-photon polymerization. Biomedical Microdevices 24, 33 (2022). doi: 10.1007/s10544-022-00633-z |
[96] |
Zhang, X. N. et al. Complex refractive indices measurements of polymers in visible and near-infrared bands. Applied Optics 59, 2337 (2020). doi: 10.1364/AO.383831 |
[97] |
Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America 55, 1205 (1965). doi: 10.1364/JOSA.55.001205 |
[98] |
Zhou, X. Q., Hou, Y. H. & Lin, J. Q. A review on the processing accuracy of two-photon polymerization. AIP Advances 5, 030701 (2015). doi: 10.1063/1.4916886 |
[99] |
Tanaka, T., Sun, H. B. & Kawata, S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. Applied Physics Letters 80, 312-314 (2002). doi: 10.1063/1.1432450 |
[100] |
Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810 |
[101] |
Park, S. H. et al. Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Applied Physics Letters 87, 154108 (2005). doi: 10.1063/1.2103393 |
[102] |
Wu, D. et al. High numerical aperture microlens arrays of close packing. Applied Physics Letters 97, 31109 (2010). doi: 10.1063/1.3464979 |
[103] |
Aderneuer, T., Fernández, O. & Ferrini, R. Two-photon grayscale lithography for free-form micro-optical arrays. Optics Express 29, 39511-39520 (2021). doi: 10.1364/OE.440251 |
[104] |
Wang, H. et al. Toward near-perfect diffractive optical elements via nanoscale 3D printing. ACS Nano 14, 10452-10461 (2020). doi: 10.1021/acsnano.0c04313 |
[105] |
Wollhofen, R. et al. 120 nm resolution and 55 nm structure size in STED-lithography. Optics Express 21, 10831-10840 (2013). doi: 10.1364/OE.21.010831 |
[106] |
He, M. F. et al. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry. Laser & Photonics Reviews 16, 2100229 (2022). doi: 10.1002/lpor.202100229 |
[107] |
He, M. F. et al. Single-color peripheral photoinhibition lithography of nanophotonic structures. PhotoniX 3, 25 (2022). doi: 10.1186/s43074-022-00072-2 |
[108] |
Yang, D. Y. et al. Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization. Applied Physics Letters 90, 013113 (2007). doi: 10.1063/1.2425022 |
[109] |
Chidambaram, N. et al. Selective surface smoothening of polymer microlenses by depth confined softening. Advanced Materials Technologies 2, 1700018 (2017). doi: 10.1002/admt.201700018 |
[110] |
Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876-883 (2018). doi: 10.1364/OPTICA.5.000876 |
[111] |
Blaicher, M. et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light:Science & Applications 9, 71 (2020). doi: 10.1038/s41377-020-0272-5 |
[112] |
Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. Journal of Lightwave Technology 33, 755-760 (2015). doi: 10.1109/JLT.2014.2373051 |
[113] |
Gečys, P. et al. Ripple formation by femtosecond laser pulses for enhanced absorptance of stainless steel. Journal of Laser Micro/Nanoengineering 10, 129-133 (2015). doi: 10.2961/jlmn.2015.02.0004 |
[114] |
Xu, Y. L. et al. Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements. Scientific Reports 11, 16426 (2021). doi: 10.1038/s41598-021-95981-w |
[115] |
Luan, E. X. et al. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Scientific Reports 13, 1260 (2023). doi: 10.1038/s41598-023-27724-y |
[116] |
Schumann, M. et al. Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Light:Science & Applications 3, e175 (2014). doi: 10.1038/lsa.2014.56 |
[117] |
Yu, S. L. et al. Compact and fabrication-tolerant waveguide bends based on quadratic reflectors. Journal of Lightwave Technology 38, 4368-4373 (2020). doi: 10.1109/JLT.2020.2986576 |
[118] |
Gehring, H. et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics 4, 10801 (2019). doi: 10.1063/1.5064401 |
[119] |
Luo, H. Z. et al. Low-loss and broadband fiber-to-chip coupler by 3D fabrication on a silicon photonic platform. Optics Letters 45, 1236-1239 (2020). doi: 10.1364/OL.386550 |
[120] |
Safronov, K. R. et al. Miniature Otto prism coupler for integrated photonics. Laser & Photonics Reviews 16, 2100542 (2022). doi: 10.1002/lpor.202100542 |
[121] |
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52-58 (2021). doi: 10.1038/s41586-020-03070-1 |
[122] |
Brückerhoff-Plückelmann, F. et al. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics 11, 4063-4072 (2022). doi: 10.1515/nanoph-2021-0752 |
[123] |
Yu, S. L. et al. Seamless hybrid-integrated interconnect NEtwork (SHINE). 2019 Optical Fiber Communications Conference and Exhibition. San Diego: IEEE, 2019, 1-3. doi:10.1364/OFC.2019.M4D.5. doi: 10.1364/OFC.2019.M4D.5 |
[124] |
Wang, X. X. et al. Design of hybrid plasmonic multi-quantum-well electro-reflective modulators towards <100 fJ/bit photonic links. IEEE Journal of Selected Topics in Quantum Electronics 27, 3400108 (2021). doi: 10.1109/JSTQE.2020.2987174 |
[125] |
Schneider, S. et al. Optical coherence tomography system mass-producible on a silicon photonic chip. Optics Express 24, 1573-1586 (2016). doi: 10.1364/OE.24.001573 |
[126] |
Zvagelsky, R. et al. Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography. Light:Advanced Manufacturing 3, 466-480 (2022). doi: 10.37188/lam.2022.039 |
[127] |
Eich, A. et al. Single-photon emission from individual nanophotonic-integrated colloidal quantum dots. ACS Photonics 9, 551-558 (2022). doi: 10.1021/acsphotonics.1c01493 |
[128] |
Preuß, J. A. et al. Low-divergence hBN single-photon source with a 3D-printed low-fluorescence elliptical polymer microlens. Nano Letters 23, 407-413 (2023). doi: 10.1021/acs.nanolett.2c03001 |
[129] |
Terhaar, R. et al. Ultrafast quantum key distribution using fully parallelized quantum channels. Optics Express 31, 2675-2688 (2023). doi: 10.1364/OE.469053 |
[130] |
Wiste, T. et al. Additive manufactured foam targets for experiments on high-power laser–matter interaction. Journal of Applied Physics 133, 043101 (2023). doi: 10.1063/5.0121650 |
[131] |
Luo, H. Z. et al. Efficient four-way vertical coupler array for chip-scale space-division-multiplexing applications. Optics Letters 46, 4324-4327 (2021). doi: 10.1364/OL.434736 |
[132] |
Xu, Y. L. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light: Advanced Manufacturing 4, 3 (2023). doi: 10.37188/lam.2023.003 |
[133] |
Maier, P. et al. 3D-printed facet-attached optical elements for connecting VCSEL and photodiodes to fiber arrays and multi-core fibers. Optics Express 30, 46602-46625 (2022). doi: 10.1364/OE.470676 |
[134] |
Maier, P. et al. Sub-kHz-linewidth external-cavity laser (ECL) with Si3N4 resonator used as a tunable pump for a Kerr frequency comb. Journal of Lightwave Technology 41, 3479-3490 (2023). doi: 10.1109/JLT.2023.3243471 |
[135] |
Chen, L. F. , Luo, H. Z. & Cai, X. L. 3D micro lenses for efficient edge coupling by two-photon lithography. Conference on Lasers and Electro-Optics. San Jose: OSA, 2021, doi:10.1364/CLEO_SI.2021.SM4C.6. doi: 10.1364/CLEO_SI.2021.SM4C.6 |
[136] |
Trappen, M. et al. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Optics Express 28, 37996-38007 (2020). doi: 10.1364/OE.405139 |
[137] |
Yu, S. L. et al. Optical free-form couplers for high-density integrated photonics (OFFCHIP): a universal optical interface. Journal of Lightwave Technology 38, 3358-3365 (2020). doi: 10.1109/JLT.2020.2971724 |
[138] |
Nair, S. P. et al. 3D printed fiber sockets for plug and play micro-optics. International Journal of Extreme Manufacturing 3, 015301 (2021). doi: 10.1088/2631-7990/abc674 |
[139] |
Wan, C. S. et al. Fiber-interconnect silicon chiplet technology for self-aligned fiber-to-chip assembly. IEEE Photonics Technology Letters 31, 1311-1314 (2019). doi: 10.1109/LPT.2019.2923206 |
[140] |
Yu, S. T., Gaylord, T. K. & Bakir, M. S. Fiber-array-to-chip interconnections with sub-micron placement accuracy via self-aligning chiplets. IEEE Photonics Technology Letters 34, 1023-1025 (2022). doi: 10.1109/LPT.2022.3199457 |
[141] |
Gordillo, O. A. J. et al. Plug-and-play fiber to waveguide connector. Optics Express 27, 20305-20310 (2019). doi: 10.1364/OE.27.020305 |
[142] |
Trautmann, A. et al. Scaffolds in a shell–a new approach combining one-photon and two-photon polymerization. Optics Express 26, 29659-29668 (2018). doi: 10.1364/OE.26.029659 |
[143] |
Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760 |
[144] |
Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nature Photonics 16, 784-791 (2022). doi: 10.1038/s41566-022-01081-0 |
[145] |
Maibohm, C. et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications. Scientific Reports 10, 8740 (2020). doi: 10.1038/s41598-020-64955-9 |
[146] |
Pisanello, M. et al. An open source three-mirror laser scanning holographic two-photon lithography system. PLoS One 17, e0265678 (2022). doi: 10.1371/journal.pone.0265678 |
[147] |
Obata, K. et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Optics Express 18, 17193-17200 (2010). doi: 10.1364/OE.18.017193 |
[148] |
Kleine, T. S. et al. 100th Anniversary of macromolecular science viewpoint: high refractive index polymers from elemental sulfur for infrared thermal imaging and optics. ACS Macro Letters 9, 245-259 (2020). doi: 10.1021/acsmacrolett.9b00948 |
[149] |
Roberts, G. et al. 3D-patterned inverse-designed mid-infrared metaoptics. Nature Communications 14, 2768 (2023). doi: 10.1038/s41467-023-38258-2 |
[150] |
Diamantopoulou, M., Karathanasopoulos, N. & Mohr, D. Stress-strain response of polymers made through two-photon lithography: Micro-scale experiments and neural network modeling. Additive Manufacturing 47, 102266 (2021). doi: 10.1016/j.addma.2021.102266 |
[151] |
Yang, Y. H. et al. Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications. Journal of Manufacturing Processes 76, 841-849 (2022). doi: 10.1016/j.jmapro.2022.02.046 |
[152] |
Landis, E. N. & Keane, D. T. X-ray microtomography. Materials Characterization 61, 1305-1316 (2010). doi: 10.1016/j.matchar.2010.09.012 |