[1] Shen, J. T. & Fan, S. H. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005). doi: 10.1364/OL.30.002001
[2] Bradac, C. et al. Room-temperature spontaneous superradiance from single diamond nanocrystals. Nat. Commun. 8, 1205 (2017). doi: 10.1038/s41467-017-01397-4
[3] Boulais, É. et al. Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat. Mater. 17, 159–166 (2018). doi: 10.1038/nmat5033
[4] Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015). doi: 10.1103/PhysRevLett.115.063601
[5] Goldberg, D. et al. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photon. 3, 662–666 (2009). doi: 10.1038/nphoton.2009.190
[6] Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).
[7] Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007). doi: 10.1038/nphys494
[8] Reimann, R. et al. Cavity-modified collective rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015). doi: 10.1103/PhysRevLett.114.023601
[9] Chou, C. W. et al. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004). doi: 10.1103/PhysRevLett.92.213601
[10] Wolke, M. et al. Cavity cooling below the recoil limit. Science 337, 75–78 (2012). doi: 10.1126/science.1219166
[11] Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012). doi: 10.1038/nature10920
[12] Lunt, R. R. et al. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009). doi: 10.1063/1.3079797
[13] Imamog-lu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999). doi: 10.1103/PhysRevLett.83.4204
[14] Biolatti, E. et al. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett. 85, 5647–5650 (2000). doi: 10.1103/PhysRevLett.85.5647
[15] Solinas, P. et al. Holonomic quantum gates: a semiconductor-based implementation. Phys. Rev. A 67, 062315 (2003). doi: 10.1103/PhysRevA.67.062315
[16] Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010). doi: 10.1016/j.ccr.2010.01.003
[17] Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954). doi: 10.1103/PhysRev.93.99
[18] Abasto, D. F. et al. Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Philos. Trans. R. Soc. A 370, 3750–3770 (2012). doi: 10.1098/rsta.2011.0213
[19] Wan, Y. et al. Direct imaging of exciton transport in tubular porphyrin aggregates by ultrafast microscopy. J. Am. Chem. Soc. 139, 7287–7293 (2017). doi: 10.1021/jacs.7b01550
[20] Caram, J. R. et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett. 16, 6808–6815 (2016). doi: 10.1021/acs.nanolett.6b02529
[21] Clark, K. A., Krueger, E. L. & Vanden Bout, D. A. Direct measurement of energy migration in supramolecular carbocyanine dye nanotubes. J. Phys. Chem. Lett. 5, 2274–2282 (2014). doi: 10.1021/jz500634f
[22] Haedler, A. T. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015). doi: 10.1038/nature14570
[23] Shaw, P. E., Ruseckas, A. & Samuel, I. D. W. Exciton diffusion measurements in poly (3‐hexylthiophene). Adv. Mater. 20, 3516–3520 (2008). doi: 10.1002/adma.200800982
[24] Zhu, T. et al. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 4, eaao3104 (2018).
[25] Vörös, Z. et al. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005). doi: 10.1103/PhysRevLett.94.226401
[26] Sun, D. Z. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014). doi: 10.1021/nl5021975
[27] Wu, S. D., Cheng, L. W. & Wang, Q. Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality. Mater. Res. Express 4, 085017 (2017). doi: 10.1088/2053-1591/aa81da
[28] Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010). doi: 10.1002/adma.200902827
[29] High, A. A. et al. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008). doi: 10.1126/science.1157845
[30] Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009). doi: 10.1038/nphoton.2009.166
[31] Baldo, M. & Stojanović, V. Optical switching: excitonic interconnects. Nat. Photon. 3, 558–560 (2009). doi: 10.1038/nphoton.2009.178
[32] Wan, Y. et al. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7, 785–792 (2015). doi: 10.1038/nchem.2348
[33] Lim, S. H. et al. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004). doi: 10.1103/PhysRevLett.92.107402
[34] Zhang, Y. H. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 116, 016602 (2016). doi: 10.1103/PhysRevLett.116.016602
[35] Bardeen, C. J. Excitonic processes in molecular crystalline materials. MRS Bull. 38, 65–71 (2013). doi: 10.1557/mrs.2012.312
[36] Spano, F. C. & Yamagata, H. Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. J. Phys. Chem. B 115, 5133–5143 (2011). doi: 10.1021/jp104752k
[37] Spano, F. C. The spectral signatures of frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010). doi: 10.1021/ar900233v
[38] Würthner, F., Kaiser, T. E. & Saha-Möller, C. R. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50, 3376–3410 (2011). doi: 10.1002/anie.201002307
[39] Cong, K. K. et al. Dicke superradiance in solids. J. Opt. Soc. Am. B 33, C80–C101 (2016). doi: 10.1364/JOSAB.33.000C80
[40] Marciniak, H. et al. Ultrafast singlet and triplet dynamics in microcrystalline pentacene films. Phys. Rev. B 79, 235318 (2009). doi: 10.1103/PhysRevB.79.235318
[41] Montali, A. et al. Polarizing energy transfer in photoluminescent materials for display applications. Nature 392, 261–264 (1998). doi: 10.1038/32616
[42] Hestand, N. J. et al. Polarized absorption in crystalline pentacene: theory vs experiment. J. Phys. Chem. C 119, 22137–22147 (2015). doi: 10.1021/acs.jpcc.5b07163
[43] Kato, T. & Kaneko, T. Transport dynamics of neutral excitons and trions in monolayer WS2. ACS Nano 10, 9687–9694 (2016). doi: 10.1021/acsnano.6b05580
[44] Tokar, V. I. Non-Gaussian diffusion profiles caused by mobile impurity-vacancy pairs in the five frequency model of diffusion. arXiv 1801, 05285 (2018).
[45] Ma, X. D. et al. Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes. Phys. Rev. Lett. 115, 017401 (2015). doi: 10.1103/PhysRevLett.115.017401
[46] Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B 90, 155449 (2014). doi: 10.1103/PhysRevB.90.155449
[47] Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014). doi: 10.1038/ncomms4646
[48] Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66–73 (2013). doi: 10.1038/nmat3500
[49] Saikin, S. K. et al. Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics 2, 21–38 (2013). doi: 10.1515/nanoph-2012-0025
[50] Lloyd, S. & Mohseni, M. Symmetry-enhanced supertransfer of delocalized quantum states. New J. Phys. 12, 075020 (2010). doi: 10.1088/1367-2630/12/7/075020
[51] Chuang, C. et al. Quantum diffusion on molecular tubes: Universal scaling of the 1D to 2D transition. Phys. Rev. Lett. 116, 196803 (2016). doi: 10.1103/PhysRevLett.116.196803
[52] Rao, A. et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 12698–12703 (2010). doi: 10.1021/ja1042462
[53] Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).
[54] Piland, G. B. et al. Singlet fission: from coherences to kinetics. J. Phys. Chem. Lett. 5, 2312–2319 (2014). doi: 10.1021/jz500676c
[55] Jundt, C. et al. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995). doi: 10.1016/0009-2614(95)00603-2
[56] Wilson, M. W. B. et al. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013). doi: 10.1021/ar300345h
[57] Lukman, S. et al. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nat. Commun. 7, 13622 (2016). doi: 10.1038/ncomms13622
[58] Lukman, S. et al. Tuneable singlet exciton fission and triplet–triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25, 5452–5461 (2015). doi: 10.1002/adfm.201501537
[59] Roberts, S. T. et al. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134, 6388–6400 (2012). doi: 10.1021/ja300504t
[60] Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014). doi: 10.1038/nchem.1945
[61] Burgess, T. et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 7, 11927 (2016). doi: 10.1038/ncomms11927
[62] Bergmann, L. et al. Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Sci. Adv. 2, e1500889 (2016). doi: 10.1126/sciadv.1500889