[1] |
Shen, J. T. & Fan, S. H. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005). doi: 10.1364/OL.30.002001 |
[2] |
Bradac, C. et al. Room-temperature spontaneous superradiance from single diamond nanocrystals. Nat. Commun. 8, 1205 (2017). doi: 10.1038/s41467-017-01397-4 |
[3] |
Boulais, É. et al. Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat. Mater. 17, 159–166 (2018). doi: 10.1038/nmat5033 |
[4] |
Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015). doi: 10.1103/PhysRevLett.115.063601 |
[5] |
Goldberg, D. et al. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photon. 3, 662–666 (2009). doi: 10.1038/nphoton.2009.190 |
[6] |
Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). |
[7] |
Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007). doi: 10.1038/nphys494 |
[8] |
Reimann, R. et al. Cavity-modified collective rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015). doi: 10.1103/PhysRevLett.114.023601 |
[9] |
Chou, C. W. et al. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004). doi: 10.1103/PhysRevLett.92.213601 |
[10] |
Wolke, M. et al. Cavity cooling below the recoil limit. Science 337, 75–78 (2012). doi: 10.1126/science.1219166 |
[11] |
Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012). doi: 10.1038/nature10920 |
[12] |
Lunt, R. R. et al. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009). doi: 10.1063/1.3079797 |
[13] |
Imamog-lu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999). doi: 10.1103/PhysRevLett.83.4204 |
[14] |
Biolatti, E. et al. Quantum information processing with semiconductor macroatoms. Phys. Rev. Lett. 85, 5647–5650 (2000). doi: 10.1103/PhysRevLett.85.5647 |
[15] |
Solinas, P. et al. Holonomic quantum gates: a semiconductor-based implementation. Phys. Rev. A 67, 062315 (2003). doi: 10.1103/PhysRevA.67.062315 |
[16] |
Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010). doi: 10.1016/j.ccr.2010.01.003 |
[17] |
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954). doi: 10.1103/PhysRev.93.99 |
[18] |
Abasto, D. F. et al. Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Philos. Trans. R. Soc. A 370, 3750–3770 (2012). doi: 10.1098/rsta.2011.0213 |
[19] |
Wan, Y. et al. Direct imaging of exciton transport in tubular porphyrin aggregates by ultrafast microscopy. J. Am. Chem. Soc. 139, 7287–7293 (2017). doi: 10.1021/jacs.7b01550 |
[20] |
Caram, J. R. et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett. 16, 6808–6815 (2016). doi: 10.1021/acs.nanolett.6b02529 |
[21] |
Clark, K. A., Krueger, E. L. & Vanden Bout, D. A. Direct measurement of energy migration in supramolecular carbocyanine dye nanotubes. J. Phys. Chem. Lett. 5, 2274–2282 (2014). doi: 10.1021/jz500634f |
[22] |
Haedler, A. T. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015). doi: 10.1038/nature14570 |
[23] |
Shaw, P. E., Ruseckas, A. & Samuel, I. D. W. Exciton diffusion measurements in poly (3‐hexylthiophene). Adv. Mater. 20, 3516–3520 (2008). doi: 10.1002/adma.200800982 |
[24] |
Zhu, T. et al. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 4, eaao3104 (2018). |
[25] |
Vörös, Z. et al. Long-distance diffusion of excitons in double quantum well structures. Phys. Rev. Lett. 94, 226401 (2005). doi: 10.1103/PhysRevLett.94.226401 |
[26] |
Sun, D. Z. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014). doi: 10.1021/nl5021975 |
[27] |
Wu, S. D., Cheng, L. W. & Wang, Q. Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality. Mater. Res. Express 4, 085017 (2017). doi: 10.1088/2053-1591/aa81da |
[28] |
Lunt, R. R., Benziger, J. B. & Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010). doi: 10.1002/adma.200902827 |
[29] |
High, A. A. et al. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008). doi: 10.1126/science.1157845 |
[30] |
Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009). doi: 10.1038/nphoton.2009.166 |
[31] |
Baldo, M. & Stojanović, V. Optical switching: excitonic interconnects. Nat. Photon. 3, 558–560 (2009). doi: 10.1038/nphoton.2009.178 |
[32] |
Wan, Y. et al. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7, 785–792 (2015). doi: 10.1038/nchem.2348 |
[33] |
Lim, S. H. et al. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004). doi: 10.1103/PhysRevLett.92.107402 |
[34] |
Zhang, Y. H. et al. Probing carrier transport and structure-property relationship of highly ordered organic semiconductors at the two-dimensional limit. Phys. Rev. Lett. 116, 016602 (2016). doi: 10.1103/PhysRevLett.116.016602 |
[35] |
Bardeen, C. J. Excitonic processes in molecular crystalline materials. MRS Bull. 38, 65–71 (2013). doi: 10.1557/mrs.2012.312 |
[36] |
Spano, F. C. & Yamagata, H. Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. J. Phys. Chem. B 115, 5133–5143 (2011). doi: 10.1021/jp104752k |
[37] |
Spano, F. C. The spectral signatures of frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010). doi: 10.1021/ar900233v |
[38] |
Würthner, F., Kaiser, T. E. & Saha-Möller, C. R. J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50, 3376–3410 (2011). doi: 10.1002/anie.201002307 |
[39] |
Cong, K. K. et al. Dicke superradiance in solids. J. Opt. Soc. Am. B 33, C80–C101 (2016). doi: 10.1364/JOSAB.33.000C80 |
[40] |
Marciniak, H. et al. Ultrafast singlet and triplet dynamics in microcrystalline pentacene films. Phys. Rev. B 79, 235318 (2009). doi: 10.1103/PhysRevB.79.235318 |
[41] |
Montali, A. et al. Polarizing energy transfer in photoluminescent materials for display applications. Nature 392, 261–264 (1998). doi: 10.1038/32616 |
[42] |
Hestand, N. J. et al. Polarized absorption in crystalline pentacene: theory vs experiment. J. Phys. Chem. C 119, 22137–22147 (2015). doi: 10.1021/acs.jpcc.5b07163 |
[43] |
Kato, T. & Kaneko, T. Transport dynamics of neutral excitons and trions in monolayer WS2. ACS Nano 10, 9687–9694 (2016). doi: 10.1021/acsnano.6b05580 |
[44] |
Tokar, V. I. Non-Gaussian diffusion profiles caused by mobile impurity-vacancy pairs in the five frequency model of diffusion. arXiv 1801, 05285 (2018). |
[45] |
Ma, X. D. et al. Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes. Phys. Rev. Lett. 115, 017401 (2015). doi: 10.1103/PhysRevLett.115.017401 |
[46] |
Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton-exciton annihilation. Phys. Rev. B 90, 155449 (2014). doi: 10.1103/PhysRevB.90.155449 |
[47] |
Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014). doi: 10.1038/ncomms4646 |
[48] |
Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66–73 (2013). doi: 10.1038/nmat3500 |
[49] |
Saikin, S. K. et al. Photonics meets excitonics: natural and artificial molecular aggregates. Nanophotonics 2, 21–38 (2013). doi: 10.1515/nanoph-2012-0025 |
[50] |
Lloyd, S. & Mohseni, M. Symmetry-enhanced supertransfer of delocalized quantum states. New J. Phys. 12, 075020 (2010). doi: 10.1088/1367-2630/12/7/075020 |
[51] |
Chuang, C. et al. Quantum diffusion on molecular tubes: Universal scaling of the 1D to 2D transition. Phys. Rev. Lett. 116, 196803 (2016). doi: 10.1103/PhysRevLett.116.196803 |
[52] |
Rao, A. et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 12698–12703 (2010). doi: 10.1021/ja1042462 |
[53] |
Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010). |
[54] |
Piland, G. B. et al. Singlet fission: from coherences to kinetics. J. Phys. Chem. Lett. 5, 2312–2319 (2014). doi: 10.1021/jz500676c |
[55] |
Jundt, C. et al. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995). doi: 10.1016/0009-2614(95)00603-2 |
[56] |
Wilson, M. W. B. et al. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013). doi: 10.1021/ar300345h |
[57] |
Lukman, S. et al. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nat. Commun. 7, 13622 (2016). doi: 10.1038/ncomms13622 |
[58] |
Lukman, S. et al. Tuneable singlet exciton fission and triplet–triplet annihilation in an orthogonal pentacene dimer. Adv. Funct. Mater. 25, 5452–5461 (2015). doi: 10.1002/adfm.201501537 |
[59] |
Roberts, S. T. et al. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134, 6388–6400 (2012). doi: 10.1021/ja300504t |
[60] |
Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014). doi: 10.1038/nchem.1945 |
[61] |
Burgess, T. et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nat. Commun. 7, 11927 (2016). doi: 10.1038/ncomms11927 |
[62] |
Bergmann, L. et al. Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Sci. Adv. 2, e1500889 (2016). doi: 10.1126/sciadv.1500889 |