[1] |
Islam, A. et al. Additive manufacturing in polymer research: advances, synthesis, and applications. Polymer Testing 132, 108364 (2024). doi: 10.1016/j.polymertesting.2024.108364 |
[2] |
Sun, Y. G. et al. 3D-printed, bi-layer, biomimetic artificial periosteum for boosting bone regeneration. Bio-Design and Manufacturing 5, 540-555 (2022). |
[3] |
Vidakis, N. et al. Surface roughness investigation of poly-jet 3D printing. Mathematics 8, 1758 (2020). doi: 10.3390/math8101758 |
[4] |
Shusteff, M. et al. One-step volumetric additive manufacturing of complex polymer structures. Science Advances 3, eaao5496 (2017). doi: 10.1126/sciadv.aao5496 |
[5] |
Riffe, M. B. et al. Multi-material volumetric additive manufacturing of hydrogels using gelatin as a sacrificial network and 3D suspension bath. Advanced Materials 36, 2309026 (2024). doi: 10.1002/adma.202309026 |
[6] |
Zhao, Z., Tian, X. X. & Song, X. Y. Engineering materials with light: recent progress in digital light processing based 3D printing. Journal of Materials Chemistry C 8, 13896-13917 (2020). doi: 10.1039/D0TC03548C |
[7] |
Lozano, A. B. et al. Analysis and advances in additive manufacturing as a new technology to make polymer injection molds for world-class production systems. Polymers 14, 1646 (2022). doi: 10.3390/polym14091646 |
[8] |
Kafle, A. et al. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers 13, 3101 (2021). |
[9] |
Jayswal, A. & Adanur, S. An overview of additive manufacturing methods, materials, and applications for flexible structures. Journal of Industrial Textiles 52, 152808372211146 (2022). |
[10] |
Awad, A. et al. 3D printing: principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics 586, 119594 (2020). |
[11] |
Rajan, K. et al. Fused deposition modeling: process, materials, parameters, properties, and applications. International Journal of Advanced Manufacturing Technology 120, 1531-1570 (2022). doi: 10.1007/s00170-022-08860-7 |
[12] |
Shah, M. et al. Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications. RSC Advances 13, 1456-1496 (2023). doi: 10.1039/D2RA06522C |
[13] |
Xu, X. Y. et al. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release 329, 743-757 (2021). doi: 10.1016/j.jconrel.2020.10.008 |
[14] |
Bao, Y. Y., Paunović, N. & Leroux, J. C. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Advanced Functional Materials 32, 2109864 (2022). doi: 10.1002/adfm.202109864 |
[15] |
Pazhamannil, R. V. & Govindan, P. Current state and future scope of additive manufacturing technologies via vat photopolymerization. Materials Today: Proceedings 43, 130-136 (2021). doi: 10.1016/j.matpr.2020.11.225 |
[16] |
Xu, H. et al. Continuous vat photopolymerization for optical lens fabrication. Small 19, 2300517 (2023). doi: 10.1002/smll.202300517 |
[17] |
De Beer, M. P. et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science Advances 5, eaau8723 (2019). doi: 10.1126/sciadv.aau8723 |
[18] |
Davoudinejad, A. Chapter 5 - Vat photopolymerization methods in additive manufacturing. in Additive Manufacturing (eds Pou, J. , Riveiro, A. & Davim, J. P. ) (Amsterdam: Elsevier, 2021), 159-181 doi: 10.1016/B978-0-12-818411-0.00007-0. |
[19] |
Gibson, I. , Rosen, D. & Stucker, B. Vat photopolymerization processes. in Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2nd edn. (eds Gibson, I., Rosen, D. & Stucker, B. ) (New York: Springer, 2015), 63-106 doi: 10.1007/978-1-4939-2113-3_4. |
[20] |
Janusziewicz, R. et al. Layerless fabrication with continuous liquid interface production. Proceedings of the National Academy of Sciences of the United States of America 113, 11703-11708 (2016). |
[21] |
Lipkowitz, G. et al. Injection continuous liquid interface production of 3D objects. Science Advances 8, eabq3917 (2022). doi: 10.1126/sciadv.abq3917 |
[22] |
Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360-364 (2019). doi: 10.1126/science.aax1562 |
[23] |
Li, X. J. et al. Mask video projection-based stereolithography with continuous resin flow. Journal of Manufacturing Science and Engineering 141, 081007 (2019). doi: 10.1115/1.4043765 |
[24] |
Schwartz, J. J. Additive manufacturing: frameworks for chemical understanding and advancement in vat photopolymerization. MRS Bulletin 47, 628-641 (2022). doi: 10.1557/s43577-022-00343-0 |
[25] |
Stüwe, L. et al. Continuous volumetric 3D printing: xolography in flow. Advanced Materials 36, 2306716 (2024). doi: 10.1002/adma.202306716 |
[26] |
Kelly, B. E. et al. Computed axial lithography for rapid volumetric 3D additive manufacturing. Proc. Solid Freeform Fabrication Symp 2017, 938-950 (2017). |
[27] |
Cao, L. C. et al. Volume holographic printing using unconventional angular multiplexing for three-dimensional display. Applied Optics 55, 6046-6051 (2016). doi: 10.1364/AO.55.006046 |
[28] |
Álvarez-Castaño, M. I. et al. Holographic volumetric additive manufacturing. Print at https://doi.org/10.48550/arXiv.2401.13755 (2024). |
[29] |
Shusteff, M. Volumetric additive manufacturing of polymer structures by holographically projected light fields. PhD thesis, Massachusetts Institute of Technology, Cambridge, 2017. |
[30] |
Corrigan, N. et al. Xolography for the production of polymeric multimaterials. Advanced Materials Technologies 9, 2400162 (2024). doi: 10.1002/admt.202400162 |
[31] |
Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620-624 (2020). doi: 10.1038/s41586-020-3029-7 |
[32] |
Sänger, J. C. et al. Linear volumetric additive manufacturing of zirconia from a transparent photopolymerizable ceramic slurry via Xolography. Open Ceramics 19, 100655 (2024). doi: 10.1016/j.oceram.2024.100655 |
[33] |
Wang, J. et al. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics 503, 207-212 (2016). doi: 10.1016/j.ijpharm.2016.03.016 |
[34] |
Swinehart, D. F. The beer-lambert law. Journal of Chemical Education 39, 333 (1962). doi: 10.1021/ed039p333 |
[35] |
Bryant, F. Snell’s law of refraction. Phys. Bull. 9, 317 (1958. |
[36] |
Düzgün, D. E. & Nadolny, K. Continuous liquid interface production (CLIP) method for rapid prototyping. Journal of Mechanical and Energy Engineering 2, 5-12 (2018). doi: 10.30464/jmee.2018.2.1.5 |
[37] |
Reid, A. & Windmill, J. Impact of beam shape on print accuracy in digital light processing additive manufacture. 3D Printing and Additive Manufacturing 11, 517-528 (2024). |
[38] |
Zhou, C., Xu, H. & Chen, Y. Spatiotemporal projection‐based additive manufacturing: a data‐driven image planning method for subpixel shifting in a split second. Advanced Intelligent Systems 3, 2100079 (2021). doi: 10.1002/aisy.202100079 |
[39] |
Zhou, C., Chen, Y. & Waltz, R. A. Optimized mask image projection for solid freeform fabrication. Journal of Manufacturing Science and Engineering 131, 061004 (2009). doi: 10.1115/1.4000416 |
[40] |
Guven, E., Karpat, Y. & Cakmakci, M. Improving the dimensional accuracy of micro parts 3D printed with projection-based continuous vat photopolymerization using a model-based grayscale optimization method. Additive Manufacturing 57, 102954 (2022). doi: 10.1016/j.addma.2022.102954 |
[41] |
Koechner, W. Solid-State Laser Engineering. 6th edn. (New York: Springer, 2006) doi: 10.1007/0-387-29338-8. |
[42] |
Zheng, X. Y. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Review of Scientific Instruments 83, 125001 (2012). doi: 10.1063/1.4769050 |
[43] |
Zheng, X. Y. et al. Multiscale metallic metamaterials. Nature Materials 15, 1100-1106 (2016). doi: 10.1038/nmat4694 |
[44] |
Zheng, X. Y. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373-1377 (2014). doi: 10.1126/science.1252291 |
[45] |
Duoss, E. B. et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Advanced Functional Materials 24, 4905-4913 (2014). doi: 10.1002/adfm.201400451 |
[46] |
Zheng, Q. Y. et al. A systematic printability study of direct ink writing towards high-resolution rapid manufacturing. International Journal of Extreme Manufacturing 5, 035002 (2023). doi: 10.1088/2631-7990/acd090 |
[47] |
Sun, Y. et al. Projection-based 3D bioprinting for hydrogel scaffold manufacturing. Bio-Design and Manufacturing 5, 633-639 (2022). doi: 10.1007/s42242-022-00189-0 |
[48] |
Yuan, S. Q. et al. Additive manufacturing of polymeric composites from material processing to structural design. Composites Part B: Engineering 219, 108903 (2021). doi: 10.1016/j.compositesb.2021.108903 |
[49] |
Hou, G. Y., Yu, Z. Z. & Ye, D. The influence of laser power and scanning speed on the dimensional accuracy of SLS formed parts. IOP Conference Series: Earth and Environmental Science 791, 012154 (2021). doi: 10.1088/1755-1315/791/1/012154 |
[50] |
Wang, Y. F. et al. Optimize projected mask images for improving three-dimensional printing accuracy for digital light processing based vat photopolymerization. Additive Manufacturing, 88, 104257 (2024). doi: 10.1016/j.addma.2024.104257 |
[51] |
Fan, X. R. et al. Modeling and spatio-temporal optimization of grayscale digital light processing 3D-printed structures with photobleaching resins. Additive Manufacturing, 99, 104659 (2025). doi: 10.1016/j.addma.2025.104659 |
[52] |
Guven, E., Karpat, Y., & Cakmakci, M. Productivity enhancement in top-down VPP via concurrent grayscaling and platform speed profile optimization for symmetrical parts having micro scale features. Progress in Additive Manufacturing 10, 983-996 (2025). doi: 10.1007/s40964-024-00692-z |
[53] |
Guven, E., Karpat, Y., & Cakmakci, M. Improving the dimensional accuracy of micro parts 3D printed with projection-based continuous vat photopolymerization using a model-based grayscale optimization method. Additive Manufacturing 57, 102954 (2022). doi: 10.1016/j.addma.2022.102954 |