[1] |
Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric camplifier. Nature 612, 56-61 (2022). doi: 10.1038/s41586-022-05329-1 |
[2] |
Liu, Y. et al. A photonic integrated circuit–based erbium-doped amplifier. Science 376, 1309-1313 (2022). doi: 10.1126/science.abo2631 |
[3] |
Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960-963 (2006). doi: 10.1038/nature04932 |
[4] |
Desurvire, E. , Simpson, J. R. & Becker, P. C. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters 12, 888-890 (1987). doi: 10.1364/OL.12.000888 |
[5] |
Temprana, E. et al. Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 348, 1445-1448 (2015). doi: 10.1126/science.aab1781 |
[6] |
Barnard, C. et al. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics 30, 1817-1830 (1994). doi: 10.1109/3.301646 |
[7] |
Stubkjaer, K. E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics 6, 1428-1435 (2000). doi: 10.1109/2944.902198 |
[8] |
Durhuus, T. et al. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology 14, 942-954 (1996). doi: 10.1109/50.511594 |
[9] |
Haq, B. et al. Micro-transfer-printed III-V-on-silicon C-band semiconductor optical amplifiers. Laser & Photonics Reviews 14, 1900364 (2020). doi: 10.1002/lpor.201900364 |
[10] |
Hansryd, J. et al. Fiber-based optical parametric amplifiers and their applications. IEEE Journal of Selected Topics in Quantum Electronics 8, 506-520 (2002). doi: 10.1109/Jstqe.2002.1016354 |
[11] |
Liu, X. P. et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photonics 4, 557-560 (2010). doi: 10.1038/nphoton.2010.119 |
[12] |
Wu, J. Y. et al. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry 7, 162-183 (2023). doi: 10.1038/s41570-022-00458-7 |
[13] |
Marhic, M. E. et al. Fiber optical parametric amplifiers in optical communication systems. Laser & Photonics Reviews 9, 50-74 (2015). doi: 10.1002/lpor.201400087 |
[14] |
Wang, C. C. & Racette, G. W. Measurement of parametric gain accompanying optical difference frequency generation. Applied Physics Letters 6, 169-171 (1965). doi: 10.1063/1.1754219 |
[15] |
Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600-603 (2016). doi: 10.1126/science.aah6516 |
[16] |
Yang, Q. F. et al. Vernier spectrometer using counterpropagating soliton microcombs. Science 363, 965-968 (2019). doi: 10.1126/science.aaw2317 |
[17] |
Zeng, X. K. et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Advanced Photonics 2, 056002 (2020). doi: 10.1117/1.AP.2.5.056002 |
[18] |
Vaughan, P. M. & Trebino, R. Optical-parametric-amplification imaging of complex objects. Optics Express 19, 8920-8929 (2011). doi: 10.1364/OE.19.008920 |
[19] |
Jia, L. N. et al. Fabrication technologies for the on‐chip integration of 2D materials. Small Methods 6, 2101435 (2022). doi: 10.1002/smtd.202101435 |
[20] |
El-Kady, M. F. et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326-1330 (2012). doi: 10.1126/science.1216744 |
[21] |
Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integratedfrequency combs. Science 351, 1176-1180 (2016). doi: 10.1126/science.aad8532 |
[22] |
Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and theircoherent control. Nature 546, 622-626 (2017). doi: 10.1038/nature22986 |
[23] |
Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214-1217 (2007). doi: 10.1038/nature06401 |
[24] |
Sun, Y. et al. Applications of optical microcombs. Advances in Optics and Photonics 15, 86 (2023). doi: 10.1364/aop.470264 |
[25] |
Trovatello, C. et al. Optical parametric amplification by monolayer transition metaldichalcogenides. Nature Photonics 15, 6-10 (2021). doi: 10.1038/s41566-020-00728-0 |
[26] |
Sciarrino, F. et al. Experimental sub-Rayleigh resolution by an unseeded high-gain opticalparametric amplifier for quantum lithography. Physical Review A 77, 012324 (2008). doi: 10.1103/PhysRevA.77.012324 |
[27] |
Leuthold, J. , Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photonics 4, 535-544 (2010). doi: 10.1038/nphoton.2010.185 |
[28] |
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023). doi: 10.1126/science.abj4396 |
[29] |
Baumgartner, R. & Byer, R. Optical parametric amplification. IEEE Journal of Quantum Electronics 15, 432-444 (1979). doi: 10.1109/JQE.1979.1070043 |
[30] |
Petrov, V. et al. Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2. Applied Physics B 78, 543-546 (2004). doi: 10.1007/s00340-004-1463-0 |
[31] |
Schmidt, B. E. et al. Frequency domain optical parametric amplification. Nature Communications 5, 3643 (2014). doi: 10.1038/ncomms4643 |
[32] |
Marhic, M. E. et al. Broadband fiber optical parametric amplifiers. Optics Letters 21, 573-575 (1996). doi: 10.1364/OL.21.000573 |
[33] |
Marhic, M. E. , Wong, K. K. Y. & Kazovsky, L. G. Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. IEEE Journal of Selected Topics in Quantum Electronics 10, 1133-1141 (2004). doi: 10.1109/JSTQE.2004.835298 |
[34] |
Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photonics 4, 41-45 (2010). doi: 10.1038/nphoton.2009.236 |
[35] |
Pasquazi, A. et al. Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide. Optics Express 18, 7634-7641 (2010). doi: 10.1364/Oe.18.007634 |
[36] |
Moss, D. J. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics 7, 597-607 (2013). doi: 10.1038/nphoton.2013.183 |
[37] |
Arianfard, H. et al. Sagnac interference in integrated photonics. Applied Physics Reviews 10, 011309 (2023). doi: 10.1063/5.0123236 |
[38] |
Wu, J. Y. et al. Graphene oxide for integrated photonics and flat optics. Advanced Materials 33, 2006415 (2021). doi: 10.1002/adma.202006415 |
[39] |
Wu, J. Y. et al. RF photonics: an optical microcombs’ perspective. IEEE Journal of Selected Topics in Quantum Electronics 24, 6101020 (2018). doi: 10.1109/jstqe.2018.2805814 |
[40] |
Wu, J. Y. et al. Compact on-chip 1 × 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings. Photonics Research 3, 9-14 (2015). doi: 10.1364/prj.3.000009 |
[41] |
Liu, J. Q. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photonics 14, 486-491 (2020). doi: 10.1038/s41566-020-0617-x |
[42] |
Wang, T. et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser & Photonics Reviews 9, 498-506 (2015). doi: 10.1002/lpor.201500054 |
[43] |
Ooi, K. J. A. et al. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge. Nature Communications 8, 13878 (2017). doi: 10.1038/ncomms13878 |
[44] |
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44-51 (2021). doi: 10.1038/s41586-020-03063-0 |
[45] |
Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications 11, 1331 (2020). doi: 10.1038/s41467-020-15005-5 |
[46] |
Yan, Z. Z. et al. An optical parametric amplifier via χ(2) in AlGaAs waveguides. Journal of Lightwave Technology 40, 5943-5951 (2022). doi: 10.1109/JLT.2022.3186551 |
[47] |
Kim, D. G. et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nature Communications 11, 5933 (2020). doi: 10.1038/s41467-020-19799-2 |
[48] |
Lamont, M. R. E. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Optics Express 16, 20374-20381 (2008). doi: 10.1364/OE.16.020374 |
[49] |
Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nature Photonics 14, 57-62 (2020). doi: 10.1038/s41566-019-0537-9 |
[50] |
Jung, H. et al. Tantala Kerr nonlinear integrated photonics. Optica 8, 811-817 (2021). doi: 10.1364/optica.411968 |
[51] |
Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics 6, 554-559 (2012). doi: 10.1038/nphoton.2012.147 |
[52] |
Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nature Photonics 12, 430-436 (2018). doi: 10.1038/s41566-018-0175-7 |
[53] |
Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotechnology 10, 407-411 (2015). doi: 10.1038/nnano.2015.73 |
[54] |
Zhang, Y. N. et al. Graphene oxide for nonlinear integrated photonics. Laser & Photonics Reviews 17, 2200512 (2023). doi: 10.1002/lpor.202200512 |
[55] |
Zheng, X. R. et al. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Advanced Materials 26, 2699-2703 (2014). doi: 10.1002/adma.201304681 |
[56] |
Wu, J. Y. et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 16, 1906563 (2020). doi: 10.1002/smll.201906563 |
[57] |
Zhang, Y. N. et al. Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Applied Materials & Interfaces 12, 33094-33103 (2020). doi: 10.1021/acsami.0c07852 |
[58] |
Qu, Y. et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Advanced Optical Materials 8, 2001048 (2020). doi: 10.1002/adom.202001048 |
[59] |
Zhang, Y. N. et al. Enhanced supercontinuum generation in integrated waveguides incorporated with graphene oxide films. Advanced Materials Technologies 8, 2201796 (2023). doi: 10.1002/admt.202201796 |
[60] |
Wu, J. Y. et al. Graphene oxide waveguide and micro-ring resonator polarizers. Laser & Photonics Reviews 13, 1900056 (2019). doi: 10.1002/lpor.201900056 |
[61] |
Liu, L. H. et al. Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides. Photonics Research 3, 206-209 (2015). doi: 10.1364/prj.3.000206 |
[62] |
Boyd, R. W. Nonlinear Optics. 4th edn. (New York: Academic Press, 2020). |
[63] |
Yang, Y. Y. et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 6, 1033-1040 (2019). doi: 10.1021/acsphotonics.9b00060 |
[64] |
Yang, Y. Y. et al. Graphene metamaterial 3D conformal coating for enhanced light harvesting. ACS Nano 17, 2611-2619 (2023). doi: 10.1021/acsnano.2c10529 |
[65] |
Bao, Q. L. et al. Broadband graphene polarizer. Nature Photonics 5, 411-415 (2011). doi: 10.1038/nphoton.2011.102 |
[66] |
Lin, H. T. et al. Chalcogenide glass-on-graphene photonics. Nature Photonics 11, 798-805 (2017). doi: 10.1038/s41566-017-0033-z |
[67] |
Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics 3, 216-219 (2009). doi: 10.1038/nphoton.2009.25 |
[68] |
Demongodin, P. et al. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides. APL Photonics 4, 076102 (2019). doi: 10.1063/1.5094523 |
[69] |
Alexander, K. et al. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics 4, 3039-3044 (2017). doi: 10.1021/acsphotonics.7b00559 |
[70] |
Qu, Y. et al. Photo-thermal tuning of graphene oxide coated integrated optical waveguides. Micromachines 13, 1194 (2022). doi: 10.3390/mi13081194 |
[71] |
Wang, H. et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research 8, 468-474 (2020). doi: 10.1364/prj.380170 |
[72] |
Yang, Y. Y. et al. Invited Article: enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics 3, 120803 (2018). doi: 10.1063/1.5045509 |
[73] |
Zhang, Y. N. et al. Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films. IEEE Journal of Selected Topics in Quantum Electronics 29, 5100413 (2023). doi: 10.1109/jstqe.2022.3177385 |
[74] |
Donnelly, C. & Tan, D. T. H. Ultra-large nonlinear parameter in graphene-silicon waveguide structures. Optics Express 22, 22820-22830 (2014). doi: 10.1364/OE.22.022820 |
[75] |
Zhang, Y. N. et al. Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films. Journal of Lightwave Technology 39, 4671-4683 (2021). doi: 10.1109/jlt.2021.3069733 |
[76] |
Ren, J. et al. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Appl. Phys. Lett. 109, 221105 (2016). doi: 10.1063/1.4969068 |
[77] |
El Dirani, H. et al. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Optics Express 27, 30726-30740 (2019). doi: 10.1364/OE.27.030726 |
[78] |
Demongodin, P. et al. Pulsed four-wave mixing at telecom wavelengths in Si3N4 waveguides locally covered by graphene. Nanomaterials 13, 451 (2023). doi: 10.3390/nano13030451 |
[79] |
Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics 13, 270-276 (2019). doi: 10.1038/s41566-019-0389-3 |
[80] |
Lin, K. T. et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature Communications 11, 1389 (2020). doi: 10.1038/s41467-020-15116-z |