[1] Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric camplifier. Nature 612, 56-61 (2022). doi: 10.1038/s41586-022-05329-1
[2] Liu, Y. et al. A photonic integrated circuit–based erbium-doped amplifier. Science 376, 1309-1313 (2022). doi: 10.1126/science.abo2631
[3] Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960-963 (2006). doi: 10.1038/nature04932
[4] Desurvire, E. , Simpson, J. R. & Becker, P. C. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters 12, 888-890 (1987). doi: 10.1364/OL.12.000888
[5] Temprana, E. et al. Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 348, 1445-1448 (2015). doi: 10.1126/science.aab1781
[6] Barnard, C. et al. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics 30, 1817-1830 (1994). doi: 10.1109/3.301646
[7] Stubkjaer, K. E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics 6, 1428-1435 (2000). doi: 10.1109/2944.902198
[8] Durhuus, T. et al. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology 14, 942-954 (1996). doi: 10.1109/50.511594
[9] Haq, B. et al. Micro-transfer-printed III-V-on-silicon C-band semiconductor optical amplifiers. Laser & Photonics Reviews 14, 1900364 (2020). doi: 10.1002/lpor.201900364
[10] Hansryd, J. et al. Fiber-based optical parametric amplifiers and their applications. IEEE Journal of Selected Topics in Quantum Electronics 8, 506-520 (2002). doi: 10.1109/Jstqe.2002.1016354
[11] Liu, X. P. et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photonics 4, 557-560 (2010). doi: 10.1038/nphoton.2010.119
[12] Wu, J. Y. et al. Graphene oxide for photonics, electronics and optoelectronics. Nature Reviews Chemistry 7, 162-183 (2023). doi: 10.1038/s41570-022-00458-7
[13] Marhic, M. E. et al. Fiber optical parametric amplifiers in optical communication systems. Laser & Photonics Reviews 9, 50-74 (2015). doi: 10.1002/lpor.201400087
[14] Wang, C. C. & Racette, G. W. Measurement of parametric gain accompanying optical difference frequency generation. Applied Physics Letters 6, 169-171 (1965). doi: 10.1063/1.1754219
[15] Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600-603 (2016). doi: 10.1126/science.aah6516
[16] Yang, Q. F. et al. Vernier spectrometer using counterpropagating soliton microcombs. Science 363, 965-968 (2019). doi: 10.1126/science.aaw2317
[17] Zeng, X. K. et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Advanced Photonics 2, 056002 (2020). doi: 10.1117/1.AP.2.5.056002
[18] Vaughan, P. M. & Trebino, R. Optical-parametric-amplification imaging of complex objects. Optics Express 19, 8920-8929 (2011). doi: 10.1364/OE.19.008920
[19] Jia, L. N. et al. Fabrication technologies for the on‐chip integration of 2D materials. Small Methods 6, 2101435 (2022). doi: 10.1002/smtd.202101435
[20] El-Kady, M. F. et al. Laser Scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326-1330 (2012). doi: 10.1126/science.1216744
[21] Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integratedfrequency combs. Science 351, 1176-1180 (2016). doi: 10.1126/science.aad8532
[22] Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and theircoherent control. Nature 546, 622-626 (2017). doi: 10.1038/nature22986
[23] Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214-1217 (2007). doi: 10.1038/nature06401
[24] Sun, Y. et al. Applications of optical microcombs. Advances in Optics and Photonics 15, 86 (2023). doi: 10.1364/aop.470264
[25] Trovatello, C. et al. Optical parametric amplification by monolayer transition metaldichalcogenides. Nature Photonics 15, 6-10 (2021). doi: 10.1038/s41566-020-00728-0
[26] Sciarrino, F. et al. Experimental sub-Rayleigh resolution by an unseeded high-gain opticalparametric amplifier for quantum lithography. Physical Review A 77, 012324 (2008). doi: 10.1103/PhysRevA.77.012324
[27] Leuthold, J. , Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photonics 4, 535-544 (2010). doi: 10.1038/nphoton.2010.185
[28] Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023). doi: 10.1126/science.abj4396
[29] Baumgartner, R. & Byer, R. Optical parametric amplification. IEEE Journal of Quantum Electronics 15, 432-444 (1979). doi: 10.1109/JQE.1979.1070043
[30] Petrov, V. et al. Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2. Applied Physics B 78, 543-546 (2004). doi: 10.1007/s00340-004-1463-0
[31] Schmidt, B. E. et al. Frequency domain optical parametric amplification. Nature Communications 5, 3643 (2014). doi: 10.1038/ncomms4643
[32] Marhic, M. E. et al. Broadband fiber optical parametric amplifiers. Optics Letters 21, 573-575 (1996). doi: 10.1364/OL.21.000573
[33] Marhic, M. E. , Wong, K. K. Y. & Kazovsky, L. G. Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers. IEEE Journal of Selected Topics in Quantum Electronics 10, 1133-1141 (2004). doi: 10.1109/JSTQE.2004.835298
[34] Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photonics 4, 41-45 (2010). doi: 10.1038/nphoton.2009.236
[35] Pasquazi, A. et al. Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide. Optics Express 18, 7634-7641 (2010). doi: 10.1364/Oe.18.007634
[36] Moss, D. J. et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nature Photonics 7, 597-607 (2013). doi: 10.1038/nphoton.2013.183
[37] Arianfard, H. et al. Sagnac interference in integrated photonics. $!ref.journal_en 10, 011309 (2023). doi: 10.1063/5.0123236
[38] Wu, J. Y. et al. Graphene oxide for integrated photonics and flat optics. Advanced Materials 33, 2006415 (2021). doi: 10.1002/adma.202006415
[39] Wu, J. Y. et al. RF photonics: an optical microcombs’ perspective. IEEE Journal of Selected Topics in Quantum Electronics 24, 6101020 (2018). doi: 10.1109/jstqe.2018.2805814
[40] Wu, J. Y. et al. Compact on-chip 1 × 2 wavelength selective switch based on silicon microring resonator with nested pairs of subrings. Photonics Research 3, 9-14 (2015). doi: 10.1364/prj.3.000009
[41] Liu, J. Q. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photonics 14, 486-491 (2020). doi: 10.1038/s41566-020-0617-x
[42] Wang, T. et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser & Photonics Reviews 9, 498-506 (2015). doi: 10.1002/lpor.201500054
[43] Ooi, K. J. A. et al. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge. Nature Communications 8, 13878 (2017). doi: 10.1038/ncomms13878
[44] Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44-51 (2021). doi: 10.1038/s41586-020-03063-0
[45] Chang, L. et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications 11, 1331 (2020). doi: 10.1038/s41467-020-15005-5
[46] Yan, Z. Z. et al. An optical parametric amplifier via χ(2) in AlGaAs waveguides. Journal of Lightwave Technology 40, 5943-5951 (2022). doi: 10.1109/JLT.2022.3186551
[47] Kim, D. G. et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nature Communications 11, 5933 (2020). doi: 10.1038/s41467-020-19799-2
[48] Lamont, M. R. E. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Optics Express 16, 20374-20381 (2008). doi: 10.1364/OE.16.020374
[49] Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nature Photonics 14, 57-62 (2020). doi: 10.1038/s41566-019-0537-9
[50] Jung, H. et al. Tantala Kerr nonlinear integrated photonics. Optica 8, 811-817 (2021). doi: 10.1364/optica.411968
[51] Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics 6, 554-559 (2012). doi: 10.1038/nphoton.2012.147
[52] Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nature Photonics 12, 430-436 (2018). doi: 10.1038/s41566-018-0175-7
[53] Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotechnology 10, 407-411 (2015). doi: 10.1038/nnano.2015.73
[54] Zhang, Y. N. et al. Graphene oxide for nonlinear integrated photonics. Laser & Photonics Reviews 17, 2200512 (2023). doi: 10.1002/lpor.202200512
[55] Zheng, X. R. et al. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Advanced Materials 26, 2699-2703 (2014). doi: 10.1002/adma.201304681
[56] Wu, J. Y. et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small 16, 1906563 (2020). doi: 10.1002/smll.201906563
[57] Zhang, Y. N. et al. Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Applied Materials & Interfaces 12, 33094-33103 (2020). doi: 10.1021/acsami.0c07852
[58] Qu, Y. et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Advanced Optical Materials 8, 2001048 (2020). doi: 10.1002/adom.202001048
[59] Zhang, Y. N. et al. Enhanced supercontinuum generation in integrated waveguides incorporated with graphene oxide films. Advanced Materials Technologies 8, 2201796 (2023). doi: 10.1002/admt.202201796
[60] Wu, J. Y. et al. Graphene oxide waveguide and micro-ring resonator polarizers. Laser & Photonics Reviews 13, 1900056 (2019). doi: 10.1002/lpor.201900056
[61] Liu, L. H. et al. Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides. Photonics Research 3, 206-209 (2015). doi: 10.1364/prj.3.000206
[62] Boyd, R. W. Nonlinear Optics. 4th edn. (New York: Academic Press, 2020).
[63] Yang, Y. Y. et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics 6, 1033-1040 (2019). doi: 10.1021/acsphotonics.9b00060
[64] Yang, Y. Y. et al. Graphene metamaterial 3D conformal coating for enhanced light harvesting. ACS Nano 17, 2611-2619 (2023). doi: 10.1021/acsnano.2c10529
[65] Bao, Q. L. et al. Broadband graphene polarizer. Nature Photonics 5, 411-415 (2011). doi: 10.1038/nphoton.2011.102
[66] Lin, H. T. et al. Chalcogenide glass-on-graphene photonics. Nature Photonics 11, 798-805 (2017). doi: 10.1038/s41566-017-0033-z
[67] Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics 3, 216-219 (2009). doi: 10.1038/nphoton.2009.25
[68] Demongodin, P. et al. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides. APL Photonics 4, 076102 (2019). doi: 10.1063/1.5094523
[69] Alexander, K. et al. Electrically tunable optical nonlinearities in graphene-covered SiN waveguides characterized by four-wave mixing. ACS Photonics 4, 3039-3044 (2017). doi: 10.1021/acsphotonics.7b00559
[70] Qu, Y. et al. Photo-thermal tuning of graphene oxide coated integrated optical waveguides. Micromachines 13, 1194 (2022). doi: 10.3390/mi13081194
[71] Wang, H. et al. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research 8, 468-474 (2020). doi: 10.1364/prj.380170
[72] Yang, Y. Y. et al. Invited Article: enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics 3, 120803 (2018). doi: 10.1063/1.5045509
[73] Zhang, Y. N. et al. Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films. IEEE Journal of Selected Topics in Quantum Electronics 29, 5100413 (2023). doi: 10.1109/jstqe.2022.3177385
[74] Donnelly, C. & Tan, D. T. H. Ultra-large nonlinear parameter in graphene-silicon waveguide structures. Optics Express 22, 22820-22830 (2014). doi: 10.1364/OE.22.022820
[75] Zhang, Y. N. et al. Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films. Journal of Lightwave Technology 39, 4671-4683 (2021). doi: 10.1109/jlt.2021.3069733
[76] Ren, J. et al. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Appl. Phys. Lett. 109, 221105 (2016). doi: 10.1063/1.4969068
[77] El Dirani, H. et al. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Optics Express 27, 30726-30740 (2019). doi: 10.1364/OE.27.030726
[78] Demongodin, P. et al. Pulsed four-wave mixing at telecom wavelengths in Si3N4 waveguides locally covered by graphene. Nanomaterials 13, 451 (2023). doi: 10.3390/nano13030451
[79] Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics 13, 270-276 (2019). doi: 10.1038/s41566-019-0389-3
[80] Lin, K. T. et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature Communications 11, 1389 (2020). doi: 10.1038/s41467-020-15116-z