[1] Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein−Podolsky−Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). doi: 10.1103/PhysRevLett.70.1895
[2] Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997). doi: 10.1038/37539
[3] Pan, J. W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012). doi: 10.1103/RevModPhys.84.777
[4] Pirandola, S. et al. Advances in quantum teleportation. Nat. Photonics 9, 641–652 (2015). doi: 10.1038/nphoton.2015.154
[5] Żukowski, M. et al. "Event-ready-detectors" Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993). doi: 10.1103/PhysRevLett.71.4287
[6] Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004). doi: 10.1038/nature02643
[7] Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999). doi: 10.1038/46503
[8] Huang, Y. F. et al. Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Lett. 93, 240501 (2004). doi: 10.1103/PhysRevLett.93.240501
[9] Ishizaka, S. & Hiroshima, T. Asymptotic teleportation scheme as a universal programmable quantum processor. Phys. Rev. Lett. 101, 240501 (2008). doi: 10.1103/PhysRevLett.101.240501
[10] Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015). doi: 10.1038/nature14246
[11] Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007). doi: 10.1038/nphoton.2007.22
[12] Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photonics 8, 356–363 (2014). doi: 10.1038/nphoton.2014.53
[13] Ren, J. G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017). doi: 10.1038/nature23675
[14] Werner, R. F. All teleportation and dense coding schemes. J. Phys. A: Math. Gen. 34, 7081–7094 (2001). doi: 10.1088/0305-4470/34/35/332
[15] Goyal, S. K. et al. Qudit-teleportation for photons with linear optics. Sci. Rep. 4, 4543 (2014). doi: 10.1038/srep04543
[16] Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998). doi: 10.1103/PhysRevLett.80.869
[17] Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998). doi: 10.1126/science.282.5389.706
[18] Horodecki, M., Horodecki, P. & Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999). doi: 10.1103/PhysRevA.60.1888
[19] Verstraete, F. & Verschelde, H. Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901 (2003). doi: 10.1103/PhysRevLett.90.097901
[20] Henderson, L., Hardy, L. & Vedral, V. Two-state teleportation. Phys. Rev. A 61, 062306 (2000). doi: 10.1103/PhysRevA.61.062306
[21] Padgett, M., Courtial, J. & Allen, L. Light's orbital angular momentum. Phys. Today 57, 35–40 (2004). doi: 10.1063/1.1768672
[22] Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nat. Phys. 3, 305–310 (2007).
[23] Glauber, R. J. Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963). doi: 10.1103/PhysRevLett.10.84
[24] Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963). doi: 10.1103/PhysRev.131.2766
[25] Loudon, R. The Quantum Theory of Light 3rd edn, (Oxford University Press, 2000).
[26] Torner, L., Torres, J. P. & Carrasco, S. Digital spiral imaging. Opt. Express 13, 873–881 (2005). doi: 10.1364/OPEX.13.000873
[27] Mair, A. et al. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001). doi: 10.1038/35085529
[28] Foley, J. T. & Zubairy, M. S. The directionality of Gaussian Schell-model beams. Opt. Commun. 26, 297–300 (1978). doi: 10.1016/0030-4018(78)90205-5
[29] Law, C. K. & Eberly, J. H. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett. 92, 127903 (2004). doi: 10.1103/PhysRevLett.92.127903
[30] Vidal, G. & Tarrach, R. Robustness of entanglement. Phys. Rev. A 59, 141–155 (1999). doi: 10.1103/PhysRevA.59.141
[31] Modi, K. et al. The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012). doi: 10.1103/RevModPhys.84.1655
[32] Ollivier, H. & Zurek, W. H. Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001). doi: 10.1103/PhysRevLett.88.017901
[33] Henderson, L. & Vedral, V. Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899–6905 (2001). doi: 10.1088/0305-4470/34/35/315
[34] Dakić, B., Vedral, V. & Brukner, Č. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010). doi: 10.1103/PhysRevLett.105.190502
[35] Luo, S. L. & Fu, S. S. Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010). doi: 10.1103/PhysRevA.82.034302
[36] Chen, L. X., Lei, J. J. & Romero, J. Quantum digital spiral imaging. Light. : Sci. Appl. 3, e153 (2014). doi: 10.1038/lsa.2014.34
[37] Popescu, S. Bell's inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994). doi: 10.1103/PhysRevLett.72.797
[38] Pittman, T. B. et al. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995). doi: 10.1103/PhysRevA.52.R3429
[39] Cheng, J. & Han, S. S. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett. 92, 093903 (2004). doi: 10.1103/PhysRevLett.92.093903
[40] Gatti, A. et al. Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004). doi: 10.1103/PhysRevLett.93.093602
[41] Valencia, A. et al. Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005). doi: 10.1103/PhysRevLett.94.063601
[42] Ferri, F. et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005). doi: 10.1103/PhysRevLett.94.183602
[43] Scarcelli, G., Berardi, V. & Shih, Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations? Phys. Rev. Lett. 96, 063602 (2006). doi: 10.1103/PhysRevLett.96.063602
[44] Gatti, A. et al. Comment on "can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?". Phys. Rev. Lett. 98, 039301 (2007). doi: 10.1103/PhysRevLett.98.039301
[45] Scarcelli, G., Berardi, V. & Shih, Y. H. Scarcelli, Berardi, and Shih reply. Phys. Rev. Lett. 98, 039302 (2007). doi: 10.1103/PhysRevLett.98.039302
[46] Zhang, M. H. et al. Sub-wavelength Fourier-transform imaging of a pure-phase object with thermal light. Phys. Lett. A 366, 569–574 (2007). doi: 10.1016/j.physleta.2007.04.021
[47] Meyers, R., Deacon, K. S. & Shih, Y. Ghost-imaging experiment by measuring reflected photons. Phys. Rev. A 77, 041801 (2008). doi: 10.1103/PhysRevA.77.041801
[48] Erkmen, B. I. & Shapiro, J. H. Unified theory of ghost imaging with Gaussian-state light. Phys. Rev. A 77, 043809 (2008). doi: 10.1103/PhysRevA.77.043809
[49] Dakić, B. et al. Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012). doi: 10.1038/nphys2377
[50] Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). doi: 10.1038/nature13586