[1] Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012). doi: 10.1038/nature11298
[2] Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014). doi: 10.1038/nphys2927
[3] Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017). doi: 10.1038/nature23280
[4] Perez-Leija, A. et al. Coherent quantum transport in photonic lattices. Phys. Rev. A 87, 012309 (2013). doi: 10.1103/PhysRevA.87.012309
[5] Hodaei, H. et al. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014). doi: 10.1126/science.1258480
[6] Feng, L. et al. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014). doi: 10.1126/science.1258479
[7] Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016). doi: 10.1038/nphoton.2016.216
[8] Wan, W. J. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011). doi: 10.1126/science.1200735
[9] Zhu, X. F. et al. One-way invisible cloak using parity-time symmetric transformation optics. Opt. Lett. 38, 2821–2824 (2013). doi: 10.1364/OL.38.002821
[10] Sounas, D. L., Fleury, R. & Alù, A. Unidirectional cloaking based on metasurfaces with balanced loss and gain. Phys. Rev. Appl. 4, 014005 (2015). doi: 10.1103/PhysRevApplied.4.014005
[11] El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018). doi: 10.1038/nphys4323
[12] Özdemir, Ş. K. et al. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019). doi: 10.1038/s41563-019-0304-9
[13] Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017). doi: 10.1038/s41566-017-0031-1
[14] Zhang, J. J. & Yao, J. P. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. 4, eaar6782 (2018). doi: 10.1126/sciadv.aar6782
[15] Liu, Y. Z. et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl. 7, 38 (2018). doi: 10.1038/s41377-018-0035-8
[16] Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958). doi: 10.1103/PhysRev.112.1940
[17] Beier, F. et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Opt. Express 24, 6011–6020 (2016). doi: 10.1364/OE.24.006011
[18] Ma, R. L. et al. Tunable sub-kHz single-mode fiber laser based on a hybrid microbottle resonator. Opt. Letters 43, 5315–5318 (2018). doi: 10.1364/OL.43.005315
[19] Mehravar, S. et al. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Appl. Phys. Lett. 108, 231104 (2016). doi: 10.1063/1.4953400
[20] Quintino, L. et al. Welding with high power fiber lasers–A preliminary study. Mater. Des. 28, 1231–1237 (2007). doi: 10.1016/j.matdes.2006.01.009
[21] Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B 27, B63–B92 (2010). doi: 10.1364/JOSAB.27.000B63
[22] Chen, M. et al. Ultra-narrow-linewidth brillouin/erbium fiber laser. CLEO: QELS_Fundamental Science (OSA, San Jose, California, 2017).
[23] Zhou, K. J. et al. kHz-order linewidth controllable 1550 nm single-frequency fiber laser for coherent optical communication. Opt. Express 25, 19752–19759 (2017). doi: 10.1364/OE.25.019752
[24] Zhang, J. J. et al. Microfiber Fabry–Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor. Opt. Lett. 37, 2925–2927 (2012). doi: 10.1364/OL.37.002925
[25] Meng, Z., Stewart, G. & Whitenett, G. Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber. J. Lightwave Technol. 24, 2179–2183 (2006). doi: 10.1109/JLT.2006.872296
[26] Chen, X. F. et al. Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating. IEEE Photon. Technol. Lett. 17, 1390–1392 (2005). doi: 10.1109/LPT.2005.848408
[27] Zhang, J. J. et al. Parity-time symmetry in wavelength space within a single spatial resonator. Nat. Commun. 11, 3217 (2020). doi: 10.1038/s41467-020-16705-8
[28] Liu, W. L., Wang, M. G. & Yao, J. P. Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator. J. Lightwave Technol. 31, 1636–1644 (2013). doi: 10.1109/JLT.2013.2254699
[29] Ulrich, R., Rashleigh, S. C. & Eickhoff, W. Bending-induced birefringence in single-mode fibers. Opt. Lett. 5, 273–275 (1980). doi: 10.1364/OL.5.000273
[30] Hui, R. Q. & O'Sullivan, M. Fiber Optic Measurement Techniques (Academic Press, San Diego, 2009).
[31] Viciani, S. et al. Lineshape of a vertical cavity surface emitting laser. Opt. Commun. 206, 89–97 (2002). doi: 10.1016/S0030-4018(02)01381-0
[32] Li, Y. H. et al. Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution. Optica 1, 446–454 (2014). doi: 10.1364/OPTICA.1.000446