[1] Heinrichsdorff, F. et al. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 71, 22–24 (1997). doi: 10.1063/1.120556
[2] Duan, J. et al. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett. 112, 251111 (2018). doi: 10.1063/1.5025879
[3] Kaiander, I. N. et al. 1.24 μm InGaAs/GaAs quantum dot laser grown by metalorganic chemical vapor deposition using tertiarybutylarsine. Appl. Phys. Lett. 84, 2992–2994 (2004). doi: 10.1063/1.1711171
[4] Alkhazraji, E. et al. Effect of temperature and ridge-width on the lasing characteristics of InAs/InP quantum-dash lasers: a thermal analysis view. Opt. Laser Technol. 98, 67–74 (2018). doi: 10.1016/j.optlastec.2017.07.039
[5] Pierścińska, D. et al. Above room temperature operation of InGaAs/AlGaAs/GaAs quantum cascade lasers. Semicond. Sci. Technol. 33, 035006 (2018). doi: 10.1088/1361-6641/aaa91a
[6] Nelson, J. et al. Steady-state carrier escape from single quantum wells. IEEE J. Quantum Electron. 29, 1460–1468 (1993). doi: 10.1109/3.234396
[7] Herrmann, K. H., Tomm, J. W. & Al-Otaibi, H. Temperature dependent carrier escape from quantum well states in GaAs/GaAlAs graded index laser structures. Semicond. Sci. Technol. 14, 293–297 (1999). doi: 10.1088/0268-1242/14/3/015
[8] Kapteyn, C. M. A. et al. Electron escape from InAs quantum dots. Phys. Rev. B 60, 14265–14268 (1999). doi: 10.1103/PhysRevB.60.14265
[9] Davydov, V. Y. et al. Band gap of InN and in-rich InxGa1-xN alloys (0.36 < x < 1). Phys. Status Solidi (B) 230, R4–R6 (2002).
[10] Van De Walle, C. G. & Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003). doi: 10.1038/nature01665
[11] Wu, J. Q. When group-Ⅲ nitrides go infrared: new properties and perspectives. J. Appl. Phys. 106, 011101 (2009). doi: 10.1063/1.3155798
[12] Nötzel, R. InN/InGaN quantum dot electrochemical devices: new solutions for energy and health. Natl Sci. Rev. 4, 184–195 (2017). doi: 10.1093/nsr/nww101
[13] Mi, Z. T. & Zhao, S. R. Extending group-Ⅲ nitrides to the infrared: recent advances in InN. Phys. Phys. Status Solidi (B) 252, 1050–1062 (2015). doi: 10.1002/pssb.201451628
[14] Mi, Z. T. et al. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc. IEEE 97, 1239–1249 (2009). doi: 10.1109/JPROC.2009.2014780
[15] Chen, S. M. et al. Electrically pumped continuous-wave Ⅲ–Ⅴ quantum dot lasers on silicon. Nat. Photonics 10, 307–311 (2016). doi: 10.1038/nphoton.2016.21
[16] Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982). doi: 10.1063/1.92959
[17] Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915–1921 (1986). doi: 10.1109/JQE.1986.1073149
[18] Suski, T. et al. The discrepancies between theory and experiment in the optical emission of monolayer In(Ga)N quantum wells revisited by transmission electron microscopy. Appl. Phys. Lett. 104, 182103 (2014). doi: 10.1063/1.4875558
[19] Chèze, C. et al. In/GaN(0001)-$(\sqrt 3 \times \sqrt 3 {\mathrm{R}}30^\circ)$ adsorbate structure as a template for embedded (In, Ga)N/GaN monolayers and short-period superlattices. Appl. Phys. Lett. 110, 072104 (2017). doi: 10.1063/1.4976198
[20] Yoshikawa, A. et al. Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix. Appl. Phys. Lett. 90, 073101 (2007). doi: 10.1063/1.2456132
[21] Yoshikawa, A. et al. Fabrication and characterization of novel monolayer InN quantum wells in a GaN matrix. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process., Meas., Phenom. 26, 1551–1559 (2008). doi: 10.1116/1.2957620
[22] Gorczyca, I. et al. Theoretical study of nitride short period superlattices. J. Phys.: Condens. Matter 30, 063001 (2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=4dfd35b0355806d585cf5b5022b3448b
[23] Wu, R. Y. et al. Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. J. Appl. Phys. 105, 013117 (2009). doi: 10.1063/1.3065274
[24] Ruffenach, S. et al. Recent advances in the MOVPE growth of indium nitride. Phys. Status Solidi (A) 207, 9–18 (2010). doi: 10.1002/pssa.200982642
[25] Bhuiyan, A. G., Hashimoto, A. & Yamamoto, A. Indium nitride (InN): a review on growth, characterization, and properties. J. Appl. Phys. 94, 2779–2808 (2003). doi: 10.1063/1.1595135
[26] Meissner, C. et al. Volmer-weber growth mode of InN quantum dots on GaN by MOVPE. Phys. Status Solidi C. 6, S545–S548 (2009). doi: 10.1002/pssc.200880872
[27] Bonef, B. et al. Quantitative investigation of indium distribution in InN wetting layers and dots grown by metalorganic chemical vapor deposition. Appl. Phys. Express 13, 065005 (2020). doi: 10.35848/1882-0786/ab9167
[28] Rodriguez, P. E. D. S. et al. Near-infrared InN quantum dots on high-In composition InGaN. Appl. Phys. Lett. 102, 131909 (2013). doi: 10.1063/1.4800779
[29] Nörenberg, C. et al. Stranski-Krastanov growth of InN nanostructures on GaN studied by RHEED, STM and AFM. Phys. Status Solidi (A) 194, 536–540 (2002). doi: 10.1002/1521-396X(200212)194:2<536::AID-PSSA536>3.0.CO;2-B
[30] Chen, H. J. Y. et al. Effects of substrate pre-nitridation and post-nitridation processes on InN quantum dots with crystallinity by droplet epitaxy. Surf. Coat. Technol. 324, 491–497 (2017). doi: 10.1016/j.surfcoat.2017.06.025
[31] Stanchu, H. V. et al. Kinetically controlled transition from 2D nanostructured films to 3D multifaceted InN nanocrystals on GaN(0001). CrystEngComm 20, 1499–1508 (2018). doi: 10.1039/C7CE02070H
[32] Yoshikawa, A. et al. Growth of InN quantum dots on N-polarity GaN by molecular-beam epitaxy. Appl. Phys. Lett. 86, 153115 (2005). doi: 10.1063/1.1900948
[33] Norman, D. P. et al. Effect of temperature and Ⅴ/Ⅲ ratio on the initial growth of indium nitride using plasma-assisted metal-organic chemical vapor deposition. J. Appl. Phys. 109, 063517 (2011). doi: 10.1063/1.3530581
[34] Yun, S. H. et al. Synthesis of InN nanowires grown on droplets formed with Au and self-catalyst on Si(111) by using metalorganic chemical vapor deposition. J. Mater. Res. 25, 1778–1783 (2010). doi: 10.1557/JMR.2010.0219
[35] Kim, E. et al. Length-controlled and selective growth of individual indium nitride nanowires by localized laser heating. Appl. Phys. Express 12, 056501 (2019). doi: 10.7567/1882-0786/ab1713
[36] Uner, N. B., Niedzwiedzki, D. M. & Thimsen, E. Nonequilibrium plasma aerotaxy of InN nanocrystals and their photonic properties. J. Phys. Chem. C. 123, 30613–30622 (2019). doi: 10.1021/acs.jpcc.9b09555
[37] Dhar Dwivedi, S. M. M. et al. Oblique angle deposited InN quantum dots array for infrared detection. J. Alloy. Compd. 766, 297–304 (2018). doi: 10.1016/j.jallcom.2018.06.346
[38] Chao, C. K. et al. Catalyst-free growth of indium nitride nanorods by chemical-beam epitaxy. Appl. Phys. Lett. 88, 233111 (2006). doi: 10.1063/1.2210296
[39] Song, W. Q. et al. Synthesis and morphology evolution of indium nitride (InN) nanotubes and nanobelts by chemical vapor deposition. CrystEngComm 21, 5356–5362 (2019). doi: 10.1039/C9CE00975B
[40] Lan, Z. H. et al. Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods. J. Cryst. Growth 269, 87–94 (2004). doi: 10.1016/j.jcrysgro.2004.05.037
[41] Liu, H. Q. et al. Ultrastrong terahertz emission from inn nanopyramids on single crystal ZnO substrates. Adv. Opt. Mater. 5, 1700178 (2017). doi: 10.1002/adom.201700178
[42] Madapu, K. K., Polaki, S. R. & Dhara, S. Excitation dependent Raman studies of self-seeded grown InN nanoparticles with different carrier concentration. Phys. Chem. Chem. Phys. 18, 18584–18589 (2016). doi: 10.1039/C6CP02405J
[43] Liu, H. Q. et al. Controllable synthesis of [11−2−2] faceted InN nanopyramids on ZnO for photoelectrochemical water splitting. Small 14, 1703623 (2018). doi: 10.1002/smll.201703623
[44] Briot, O., Maleyre, B. & Ruffenach, S. Indium nitride quantum dots grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 83, 2919–2921 (2003). doi: 10.1063/1.1613044
[45] Parish, G. et al. SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1-xN. J. Electron. Mater. 29, 15–20 (2000). doi: 10.1007/s11664-000-0087-3
[46] Ruffenach, S. et al. Alternative precursors for MOVPE growth of InN and GaN at low temperature. J. Cryst. Growth 311, 2791–2794 (2009). doi: 10.1016/j.jcrysgro.2009.01.038
[47] Stringfellow, G. B. Organometallic Vapor-Phase Epitaxy: Theory and Practice 2nd edn. (Academic Press, 1999).
[48] Lund, C. et al. Metal-organic chemical vapor deposition of N-polar InN quantum dots and thin films on vicinal GaN. J. Appl. Phys. 123, 055702 (2018). doi: 10.1063/1.5009904
[49] Ivaldi, F. et al. Influence of a GaN cap layer on the morphology and the physical properties of embedded self-organized InN quantum dots on GaN(0001) grown by metal-organic vapour phase epitaxy. Jpn. J. Appl. Phys. 50, 031004 (2011). doi: 10.1143/JJAP.50.031004
[50] Ku, C. S., Chou, W. C. & Lee, M. C. Optical investigations of InN nanodots capped by GaN at different temperatures. Appl. Phys. Lett. 90, 132116 (2007). doi: 10.1063/1.2716347
[51] Meissner, C. et al. Indium nitride quantum dot growth modes in metalorganic vapour phase epitaxy. J. Cryst. Growth 310, 4959–4962 (2008). doi: 10.1016/j.jcrysgro.2008.07.066
[52] Ruffenach, S. et al. Growth of InN quantum dots by MOVPE. Phys. Status Solidi (C. ) 2, 826–832 (2005). doi: 10.1002/pssc.200460319
[53] Bi, Z. X. et al. Self-assembled InN quantum dots on side facets of GaN nanowires. J. Appl. Phys. 123, 164302 (2018). doi: 10.1063/1.5022756
[54] Reilly, C. E. et al. MOCVD growth and characterization of InN quantum dots. Phys. Status Solidi (B) 257, 1900508 (2020). doi: 10.1002/pssb.201900508
[55] Porowski, S. & Grzegory, I. Thermodynamical properties of Ⅲ–Ⅴ nitrides and crystal growth of GaN at high N2 pressure. J. Cryst. Growth 178, 174–188 (1997). doi: 10.1016/S0022-0248(97)00072-9
[56] Gautier, S. et al. GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3. J. Cryst. Growth 298, 428–432 (2007). doi: 10.1016/j.jcrysgro.2006.10.064
[57] Hsu, Y. J., Hong, L. S. & Tsay, J. E. Metalorganic vapor-phase epitaxy of GaN from trimethylgallium and tertiarybutylhydrazine. J. Cryst. Growth 252, 144–151 (2003). doi: 10.1016/S0022-0248(03)00947-3
[58] Lee, R. T. & Stringfellow, G. B. Pyrolysis of 1, 1 dimethylhydrazine for OMVPE growth. J. Electron. Mater. 28, 963–969 (1999). doi: 10.1007/s11664-999-0205-9
[59] Sartel, C. et al. Low temperature homoepitaxy of GaN by LP-MOVPE using Dimethylhydrazine and nitrogen. Superlattices Microstruct. 40, 476–482 (2006). doi: 10.1016/j.spmi.2006.09.026
[60] Suntola, T. Atomic layer epitaxy. Thin Solid Films 216, 84–89 (1992). doi: 10.1016/0040-6090(92)90874-B
[61] Kobayashi, N., Makimoto, T. & Horikoshi, Y. Flow-rate modulation epitaxy of GaAs. Jpn. J. Appl. Phys. 24, L962–L964 (1985). doi: 10.1143/JJAP.24.L962
[62] Horikoshi, Y. Advanced epitaxial growth techniques: atomic layer epitaxy and migration-enhanced epitaxy. J. Cryst. Growth 201-202, 150–158 (1999). doi: 10.1016/S0022-0248(98)01314-1
[63] Karam, N. H. et al. Growth of device quality GaN at 550 ℃ by atomic layer epitaxy. Appl. Phys. Lett. 67, 94–96 (1995). doi: 10.1063/1.115519
[64] Ke, W. C. et al. Impacts of ammonia background flows on structural and photoluminescence properties of InN dots grown on GaN by flow-rate modulation epitaxy. Appl. Phys. Lett. 89, 263117 (2006). doi: 10.1063/1.2425038
[65] Reilly, C. E. et al. Flow modulation metalorganic vapor phase epitaxy of GaN at temperatures below 600 ℃. Semicond. Sci. Technol. 35, 095014 (2020). doi: 10.1088/1361-6641/ab9d32
[66] Bernardini, F., Fiorentini, V. & Vanderbilt, D. Spontaneous polarization and piezoelectric constants of Ⅲ–Ⅴ nitrides. Phys. Rev. B 56, R10024–R10027 (1997). doi: 10.1103/PhysRevB.56.R10024
[67] Schulz, S. & O'Reilly, E. P. Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B 82, 033411 (2010). doi: 10.1103/PhysRevB.82.033411
[68] Keller, S. et al. Recent progress in metal-organic chemical vapor deposition of (000$\bar 1$) N-polar group-Ⅲ nitrides. Semicond. Sci. Technol. 29, 113001 (2014). doi: 10.1088/0268-1242/29/11/113001
[69] Keller, S. et al. Properties of N-polar AlGaN/GaN heterostructures and field effect transistors grown by metalorganic chemical vapor deposition. J. Appl. Phys. 103, 033708 (2008). doi: 10.1063/1.2838214
[70] Wong, M. H. et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond. Sci. Technol. 28, 074009 (2013). doi: 10.1088/0268-1242/28/7/074009
[71] Li, H. R. et al. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels. Appl. Phys. Lett. 112, 073501 (2018). doi: 10.1063/1.5010944
[72] Rajan, S. et al. N-polar GaN/AlGaN/GaN high electron mobility transistors. J. Appl. Phys. 102, 044501 (2007). doi: 10.1063/1.2769950
[73] Masui, H. et al. Luminescence characteristics of N-polar GaN and InGaN films grown by metal organic chemical vapor deposition. Jpn. J. Appl. Phys. 48, 071003 (2009). doi: 10.1143/JJAP.48.071003
[74] Lund, C. et al. Properties of N-polar InGaN/GaN quantum wells grown with triethyl gallium and triethyl indium as precursors. Semicond. Sci. Technol. 34, 075017 (2019). doi: 10.1088/1361-6641/ab1204
[75] Segev, D. & Van De Walle, C. G. Origins of fermi-level pinning on GaN and InN polar and nonpolar surfaces. EPL (Europhys. Lett. ) 76, 305–311 (2006). doi: 10.1209/epl/i2006-10250-2
[76] Mahboob, I. et al. Origin of electron accumulation at wurtzite InN surfaces. Phys. Rev. B 69, 201307 (2004). doi: 10.1103/PhysRevB.69.201307
[77] Mahboob, I. et al. Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett. 92, 036804 (2004). doi: 10.1103/PhysRevLett.92.036804
[78] Reilly, C. E. et al. Infrared luminescence from N-polar InN quantum dots and thin films grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 114, 241103 (2019). doi: 10.1063/1.5109734
[79] Park, S. H. & Chuang, S. L. Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Phys. Rev. 59, 4725–4737 (1999). doi: 10.1103/PhysRevB.59.4725
[80] Buzynin, Y. N. et al. InN layers grown by MOCVD on a-plane Al2O3. Phys. Status Solidi (A) 215, 1700919 (2018). doi: 10.1002/pssa.201700919
[81] Moret, M. et al. MOVPE growth and characterization of indium nitride on C-, A-, M-, and R-plane sapphire. Phys. Status Solidi (A) 207, 24–28 (2010). doi: 10.1002/pssa.200982641
[82] Hsu, L. H. et al. Enhanced photocurrent of a nitride–based photodetector with InN dot-like structures. Optical Mater. Express 4, 2565–2573 (2014). doi: 10.1364/OME.4.002565
[83] Chan, P. et al. Growth by MOCVD and photoluminescence of semipolar $(20\overline{21})$ InN quantum dashes. J. Cryst. Growth 563, 126093 (2021). doi: 10.1016/j.jcrysgro.2021.126093
[84] Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954). doi: 10.1103/PhysRev.93.632
[85] Khan, N. et al. High mobility InN epilayers grown on AlN epilayer templates. Appl. Phys. Lett. 92, 172101 (2008). doi: 10.1063/1.2917473
[86] Lozano, J. G. et al. Nucleation of InN quantum dots on GaN by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 263104 (2005). doi: 10.1063/1.2152110
[87] Dwivedi, S. et al. InN nanowires based near-infrared broadband optical detector. IEEE Photonics Technol. Lett. 31, 1526–1529 (2019). doi: 10.1109/LPT.2019.2936272
[88] Krishna, S. et al. Ultrafast photoresponse and enhanced photoresponsivity of indium nitride based broad band photodetector. Sol. Energy Mater. Sol. Cells 172, 376–383 (2017). doi: 10.1016/j.solmat.2017.08.017
[89] Winden, A. et al. Spectral sensitivity tuning of vertical InN nanopyramid-based photodetectors. Jpn. J. Appl. Phys. 52, 08JF05 (2013). doi: 10.7567/JJAP.52.08JF05
[90] Tekcan, B. et al. A near-infrared range photodetector based on indium nitride nanocrystals obtained through laser ablation. IEEE Electron Device Lett. 35, 936–938 (2014). doi: 10.1109/LED.2014.2336795
[91] Lai, W. J. et al. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids. Scr. Materialia 63, 653–656 (2010). doi: 10.1016/j.scriptamat.2010.05.035