[1] Rolland, J. P. et al. Freeform optics for imaging. Optica 8, 161-176 (2021). doi: 10.1364/OPTICA.413762
[2] González-Acuña, R. G. & Chaparro-Romo, H. A. General formula for bi-aspheric singlet lens design free of spherical aberration. Applied Optics 57, 9341-9345 (2018). doi: 10.1364/AO.57.009341
[3] Braunecker, B., Hentschel, R. & Tiziani, H. J. Advanced optics using aspherical elements. Bellingham: SPIE Press (2008).
[4] Beutler, A. Metrology for the production process of aspheric lenses. Advanced Optical Technologies 5, 211-228 (2016).
[5] Henselmans, R. et al. The NANOMEFOS non-contact measurement machine for freeform optics. Precision Engineering 35, 607-624 (2011). doi: 10.1016/j.precisioneng.2011.04.004
[6] Berger, G. & Petter, J. Non-contact metrology of aspheric surfaces based on MWLI technology. In Optifab 2013, vol. 8884, 170-177. International Society for Optics and Photonics (SPIE, 2013). doi: https://doi.org/10.1117/12.2029238
[7] Wendel, M. Precision measurement of large optics up to 850 mm in diameter by use of a scanning point multi-wavelength interferometer. In Ninth European Seminar on Precision Optics Manufacturing, vol. 12298, 95-100. International Society for Optics and Photonics (SPIE, 2022). doi: 10.1117/12.2624505
[8] Murphy, P. et al. Stitching interferometry: A flexible solution for surface metrology. Optics and Photonics News 14, 38-43 (2003).
[9] Sohn, A. et al. High resolution, non-contact surface metrology for freeform optics in digital immersive displays. In Optics and Photonics for Advanced Dimensional Metrology Ⅱ, vol. 12137, 137-148. International Society for Optics and Photonics (SPIE, 2022). doi: 10.1117/12.2624964.
[10] Küchel, M. F. Absolute measurement of rotationally symmetrical aspheric surfaces. In Frontiers in Optics (Optica Publishing Group, 2006). doi:https://doi.org/10.1364/OFT.2006.OFTuB5.
[11] Küchel, M. F. Interferometric measurement of rotationally symmetric aspheric surfaces. In Optical Measurement Systems for Industrial Inspection VI, vol. 7389, 389-422. International Society for Optics and Photonics (SPIE, 2009). doi: https://doi.org/10.1117/12.830655.
[12] Dresel, T. et al. Advances in flexible precision aspheric form measurement using axially scanned interferometry. In Nelson, J. D. & Unger, B. L. (eds.) Optifab 2021, vol. 11889, 1-8. International Society for Optics and Photonics (SPIE, 2021). doi: https://doi.org/10.1117/12.2602462 .
[13] Müller, A. F. et al. Multiple aperture shearinterferometry (MArS): a solution to the aperture problem for the form measurement of aspheric surfaces. Optics Express 28, 34677-34691 (2020). doi: 10.1364/OE.408979
[14] Wang, Y.-C., Shyu, L.-H. & Chang, C.-P. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement. Sensors 10, 2577-2586 (2010). doi: 10.3390/s100402577
[15] Wyant, C. & Bennet, P. Using computer generated holograms to test aspheric wavefronts. App. Opt. 11, 2833-2839 (1972). doi: 10.1364/AO.11.002833
[16] Pruss, C. et al. Computer-generated holograms in interferometric testing. Optical Engineering 43, 2534-2586 (2004). doi: https://doi.org/10.1117/1.1804544
[17] Yatagai, T. & Saito, H. Interferometric testing with computergenerated holograms: aberration balancing method and error analysis. Applied Optics 17, 558-565 (1978). doi: 10.1364/AO.17.000558
[18] Dörband, B. & Tiziani, H. J. Testing aspheric surfaces with computer-generated holograms: analysis of adjustment and shape errors. Applied Optics 24, 2604-2611 (1985). doi: 10.1364/AO.24.002604
[19] Asfour, J.-M. & Poleshchuk, A. G. Asphere testing with a fizeau interferometer based on a combined computer-generated hologram. Journal of the Optical Society of America A 23, 172-178 (2006). doi: 10.1364/JOSAA.23.000172
[20] Greivenkamp, J. Sub-nyquist interferometry. Applied Optics 26, (1987).
[21] Garbusi, E., Pruss, C. & Osten, W. Interferometer for precise and flexible asphere testing. Optics Letters 33, 2973-2975 (2008). doi: 10.1364/OL.33.002973
[22] Osten, W. et al. Verfahren und Messvorrichtung zur Vermessung einer optisch glatten Oberfläche, German Patent DE 102006057606 A1, (2006).
[23] Pruss, C. et al. Measuring aspheres quickly: tilted wave interferometry. Optical Engineering 56, 111713 (2017). doi: 10.1117/1.OE.56.11.111713
[24] Osten, W., Pruss, C. & Schindler, J. Tilted wave interferometer measures aspheres and freeform optics. SPIE Professional (2016).
[25] Beisswanger, R. et al. Tilted wave interferometer in common path configuration: challenges and realization. In Optical Measurement Systems for Industrial Inspection XI, vol. 11056, 395-404. International Society for Optics and Photonics (SPIE, 2019). doi: https://doi.org/10.1117/12.2526175.
[26] Fortmeier, I. Zur Optimierung von Auswerteverfahren für Tilted-Wave Interferometer. PhD thesis, Universität Stuttgart (2016).
[27] Baer, G. Ein Beitrag zur Kalibrierung von Nichtnull-Interferometern zur Vermessung von Asphären und Freiformflächen. PhD thesis, Universität Stuttgart (2016).
[28] Schindler, J. Methoden zur selbstkalibrierenden Vermessung von Asphären und Freiformen in der Tilted-Wave-Interferometrie. PhD thesis, Universität Stuttgart (2020).
[29] Baer, G. et al. Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces. Optics Express 22, 31200-31211 (2014). doi: 10.1364/OE.22.031200
[30] Schindler, J., Pruss, C. & Osten, W. Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry. Optical Engineering 58, 074105 (2019). doi: https://doi.org/10.1117/1.OE.58.7.074105
[31] Fortmeier, I. et al. Development of a metrological reference system for the form measurement of aspheres and freeform surfaces based on a tilted-wave interferometer. Measurement Science and Technology 33, 045013 (2022). doi: 10.1088/1361-6501/ac47bd
[32] Baer, G., Pruss, C. & Osten, W. Verkippte Objektwellen nutzendes und ein Fizeau-Interferometerobjektiv aufweisendes Interferometer, German Patent DE102015222366, (2015).
[33] Li, J. et al. Common-path interferometry with tilt carrier for surface measurement of complex optics. Applied Optics 58, 1991-1997 (2019). doi: 10.1364/AO.58.001991
[34] Lowman, A. E. & Greivenkamp, J. E. Interferometerinduced wavefront errors when testing in a nonnull configuration. In Interferometry VI: Applications, vol. 2004, 173-181. International Society for Optics and Photonics (SPIE, 1994). doi: https://doi.org/10.1117/12.172590.
[35] Lowman, A. E. & Greivenkamp, J. E. Modeling an interferometer for non-null testing of aspheres. In Optical Manufacturing and Testing, vol. 2536, 139-147. International Society for Optics and Photonics (SPIE, 1995). doi: https://doi.org/10.1117/12.218416.
[36] Gappinger, R. O. & Greivenkamp, J. J. Iterative reverse optimization procedure for calibration of aspheric wave-front measurements on a nonnull interferometer. Applied optics 43, 5152-61 (2004). doi: 10.1364/AO.43.005152
[37] Fortmeier, I. & Schulz, M. Comparison of form measurement results for optical aspheres and freeform surfaces. Measurement Science and Technology 33, 045010 (2022). doi: 10.1088/1361-6501/ac47bb
[38] Gronle, A., Pruss, C. & Herkommer, A. Misalignment of spheres, aspheres and freeforms in optical measurement systems. Optics Express 30, 797-814 (2022). doi: 10.1364/OE.443420
[39] Harsch, A., et al. Monte Carlo simulations: a tool to assess complex measurement systems. In Sixth European Seminar on Precision Optics Manufacturing, vol. 11171, 66-72. International Society for Optics and Photonics (SPIE, 2019). doi: https://doi.org/10.1117/12.2526799.
[40] Baer, G. et al. Measurement of aspheres and free-form surfaces in a non-null test interferometer: reconstruction of high-frequency errors. In Optical Measurement Systems for Industrial Inspection VIII, vol. 8788, 337-343. International Society for Optics and Photonics (SPIE, 2013). doi: 10.1117/12.2021518.
[41] Malacara, D. Optical Shop Testing (Wiley Interscience, Hoboken, 2007), 3rd edn.