[1] Polglase, A. L. et al. A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract. Gastrointest. Endosc. 62, 686–695 (2005). doi: 10.1016/j.gie.2005.05.021
[2] Flusberg, B. A. et al. Fiber-optic fluorescence imaging. Nat. Methods 2, 941–950 (2005). doi: 10.1038/nmeth820
[3] Oh, G., Chung, E. & Yun, S. H. Optical fibers for high-resolution in vivo microendoscopic fluorescence imaging. Opt. Fiber Technol. 19, 760–771 (2013). doi: 10.1016/j.yofte.2013.07.008
[4] Yelin, D. et al. Three-dimensional miniature endoscopy. Nature 443, 765 (2006). doi: 10.1038/443765a
[5] Kim, P. et al. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods 7, 303–305 (2010). doi: 10.1038/nmeth.1440
[6] Goetz, M., Malek, N. P. & Kiesslich, R. Microscopic imaging in endoscopy: endomicroscopy and endocytoscopy. Nat. Rev. Gastroenterol. Hepatol. 11, 11–18 (2014). doi: 10.1038/nrgastro.2013.134
[7] Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018). doi: 10.1038/s41566-018-0224-2
[8] Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photonics 9, 529–535 (2015). doi: 10.1038/nphoton.2015.112
[9] Leite, I. T. et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics 12, 33–39 (2018). doi: 10.1038/s41566-017-0053-8
[10] Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012). doi: 10.1103/PhysRevLett.109.203901
[11] Orth, A. et al. Optical fiber bundles: ultra-slim light field imaging probes. Sci. Adv. 5, eaav1555 (2019). doi: 10.1126/sciadv.aav1555
[12] Amitonova, L. V. & de Boer, J. F. Endo-microscopy beyond the Abbe and Nyquist limits. Light. Sci. Appl. 9, 81 (2020). doi: 10.1038/s41377-020-0308-x
[13] Vasquez-Lopez, S. A. et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light. Sci. Appl. 7, 110 (2018). doi: 10.1038/s41377-018-0111-0
[14] Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2, 39–43 (2008). doi: 10.1038/nphoton.2007.250
[15] Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015). doi: 10.1038/nmeth.3616
[16] Dehoux, T. et al. All-optical broadband ultrasonography of single cells. Sci. Rep. 5, 8650 (2015). doi: 10.1038/srep08650
[17] Viel, A. et al. Picosecond ultrasounds as elasticity probes in neuron-like cells models. Appl. Phys. Lett. 115, 213701 (2019). doi: 10.1063/1.5129783
[18] Pérez-Cota, F. et al. New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy. Biomed. Opt. Express 10, 2399–2408 (2019). doi: 10.1364/BOE.10.002399
[19] Liu, L. W. et al. Label-free multi-parametric imaging of single cells: dual picosecond optoacoustic microscopy. J. Biophotonics 12, e201900045 (2019). doi: 10.1002/jbio.201970028
[20] Lemons, R. A. & Quate, C. F. Acoustic microscope—scanning version. Appl. Phys. Lett. 24, 163–165 (1974). doi: 10.1063/1.1655136
[21] Colchester, R. J. et al. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging. Biomed. Opt. Express 6, 1502–1511 (2015). doi: 10.1364/BOE.6.001502
[22] Strohm, E. M., Moore, M. J. & Kolios, M. C. High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics 4, 36–42 (2016). doi: 10.1016/j.pacs.2016.01.001
[23] Strohm, E. M., Moore, M. J. & Kolios, M. C. Single cell photoacoustic microscopy: a review. IEEE J. Sel. Top. Quantum Electron. 22, 6801215 (2016). doi: 10.1109/JSTQE.2015.2497323
[24] Finlay, M. C. et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study. Light. Sci. Appl. 6, e17103 (2017). doi: 10.1038/lsa.2017.103
[25] Liu, L. W. et al. Remote imaging of single cell 3D morphology with ultrafast coherent phonons and their resonance harmonics. Sci. Rep. 9, 6409 (2019). doi: 10.1038/s41598-019-42718-5
[26] Thomsen, C. et al. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53, 989–992 (1984). doi: 10.1103/PhysRevLett.53.989
[27] Brillouin, L. Diffusion de la lumière et des rayons X par un corps transparent homogène: influence de l'agitation thermique. Ann. Phys. 9, 88–122 (1922). doi: 10.1051/anphys/192209170088
[28] Pérez-Cota, F. et al. High resolution 3D imaging of living cells with sub-optical wavelength phonons. Sci. Rep. 6, 39326 (2016). doi: 10.1038/srep39326
[29] Danworaphong, S. et al. Three-dimensional imaging of biological cells with picosecond ultrasonics. Appl. Phys. Lett. 106, 163701 (2015). doi: 10.1063/1.4918275
[30] Ansari, R. et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light. Sci. Appl. 7, 75 (2018). doi: 10.1038/s41377-018-0070-5
[31] Thomsen, C. et al. Picosecond interferometric technique for study of phonons in the brillouin frequency range. Opt. Commun. 60, 55–58 (1986). doi: 10.1016/0030-4018(86)90116-1
[32] Gusev, V. E. & Ruello, P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 5, 031101 (2018). doi: 10.1063/1.5017241
[33] La Cavera, S. et al. Time resolved Brillouin fiber-spectrometer. Opt. Express 27, 25064–25071 (2019). doi: 10.1364/OE.27.025064
[34] Pérez-Cota, F. et al. Apparent attenuation by opto-acoustic defocus in phonon microscopy. Photoacoustics 19, 100180 (2020). doi: 10.1016/j.pacs.2020.100180
[35] Prevedel, R. et al. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods 16, 969–977 (2019). doi: 10.1038/s41592-019-0543-3
[36] Devos, A. & Côte, R. Strong oscillations detected by picosecond ultrasonics in silicon: evidence for an electronic-structure effect. Phys. Rev. B 70, 125208 (2004). doi: 10.1103/PhysRevB.70.125208
[37] Dehoux, T., Tsapis, N. & Audoin, B. Relaxation dynamics in single polymer microcapsules probed with laser-generated GHz acoustic waves. Soft Matter 8, 2586–2589 (2012). doi: 10.1039/c2sm07146k
[38] Dehoux, T. et al. Probing single-cell mechanics with picosecond ultrasonics. Ultrasonics 56, 160–171 (2015). doi: 10.1016/j.ultras.2014.07.010
[39] Matsuda, O. & Wright, O. B. Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation. J. Opt. Soc. Am. B 19, 3028–3041 (2002). doi: 10.1364/JOSAB.19.003028
[40] Uchida, N. Direct measurement of photoelastic coefficients by ultrasonic light diffraction technique. Jpn. J. Appl. Phys. 8, 329–333 (1969). doi: 10.1143/JJAP.8.329
[41] Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford: Oxford University Press, 2005).
[42] Yang, F. et al. Study of phonon propagation in water using picosecond ultrasonics. J. Phys. Conf. Ser. 92, 012024 (2007). doi: 10.1088/1742-6596/92/1/012024
[43] Smith, R. J. et al. 3D phonon microscopy with sub-micron axial-resolution. Sci. Rep. 11, 3301 (2021). doi: 10.1038/s41598-021-82639-w
[44] Nikitin, S. M. et al. Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering. Sci. Rep. 5, 9352 (2015). doi: 10.1038/srep09352
[45] Guo, H. et al. Photoacoustic endoscopy: a progress review. J. Biophotonics 13, e202000217 (2020). doi: 10.1002/jbio.202000217
[46] Jabbour, J. M. et al. Confocal endomicroscopy: instrumentation and medical applications. Ann. Biomed. Eng. 40, 378–397 (2012). doi: 10.1007/s10439-011-0426-y
[47] Che, S. et al. A scanning acoustic microscope based on picosecond ultrasonics. Ultrasonics 56, 153–159 (2015). doi: 10.1016/j.ultras.2014.02.010
[48] Dehoux, T. et al. Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object. Light. Sci. Appl. 5, e16082 (2016). doi: 10.1038/lsa.2016.82
[49] Fuentes-Domínguez, R. et al. Characterising the size and shape of metallic nano-structures by their acoustic vibrations. Nanoscale 12, 14230–14236 (2020). doi: 10.1039/D0NR03410J
[50] Harasaki, A., Schmit, J. & Wyant, J. C. Offset of coherent envelope position due to phase change on reflection. Appl. Opt. 40, 2102–2106 (2001). doi: 10.1364/AO.40.002102
[51] O'Mahony, C. et al. Characterization of micromechanical structures using white-light interferometry. Meas. Sci. Technol. 14, 1807–1814 (2003). doi: 10.1088/0957-0233/14/10/310
[52] Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017). doi: 10.1038/nnano.2017.45
[53] Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019). doi: 10.1002/advs.201900344
[54] Elzinga, P. A. et al. Pump/probe spectroscopy by asynchronous optical sampling. Appl. Spectrosc. 41, 2–4 (1987). doi: 10.1366/0003702874868025
[55] Smith, R. J. et al. Optically excited nanoscale ultrasonic transducers. J. Acoust. Soc. Am. 137, 219–227 (2015). doi: 10.1121/1.4904487