[1] Zimmer, M. Glowing Genes: A Revolution In Biotechnology. (Amherst, NY: Prometheus Books, 2005).
[2] Day, R. N. & Schaufele, F. Fluorescent protein tools for studying protein dynamics in living cells: a review. Journal of Biomedical Optics 13, 031202 (2008). doi: 10.1117/1.2939093
[3] Duan, Y. S. et al. Recent progress on synthesis of fluorescein probes. Mini-Reviews in Organic Chemistry 6, 35-43 (2009). doi: 10.2174/157019309787316111
[4] Beija, M., Afonso, C. A. M. & Martinho, J. M. G. Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chemical Society Reviews 38, 2410-2433 (2009). doi: 10.1039/b901612k
[5] Gorka, A. P., Nani, R. R. & Schnermann, M. J. Cyanine polyene reactivity: scope and biomedical applications. Organic & Biomolecular Chemistry 13, 7584-7598 (2015).
[6] Bricks, J. L. et al. Molecular design of near infrared polymethine dyes: a review. Dyes and Pigments 121, 238-255 (2015). doi: 10.1016/j.dyepig.2015.05.016
[7] Henary, M. & Levitz, A. Synthesis and applications of unsymmetrical carbocyanine dyes. Dyes and Pigments 99, 1107-1116 (2013). doi: 10.1016/j.dyepig.2013.08.001
[8] Panigrahi, M. et al. Syntheses of cyanines: a review. Tetrahedron 68, 781-805 (2012). doi: 10.1016/j.tet.2011.10.069
[9] Mishra, A. et al. Cyanines during the 1990s: a review. Chemical Reviews 100, 1973-2012 (2000). doi: 10.1021/cr990402t
[10] Levitus, M. & Ranjit, S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Quarterly Reviews of Biophysics 44, 123-151 (2011). doi: 10.1017/S0033583510000247
[11] Jose, J. & Burgess, K. Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62, 11021-11037 (2006). doi: 10.1016/j.tet.2006.08.056
[12] Ulrich, G., Ziessel, R. & Harriman A. The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angewandte Chemie International Edition 47, 1184-1201 (2008). doi: 10.1002/anie.200702070
[13] Ni, Y. & Wu, J. S. Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Organic & Biomolecular Chemistry 12, 3774-3791 (2014).
[14] Hohman, B. LED light source: major advance in fluorescence microscopy. Biomedical Instrumentation & Technology 41, 461-464 (2007).
[15] Islam, K., Ploschner, M. & Goldys, E. M. Multi-LED light source for hyperspectral imaging. Optics Express 25, 32659-32668 (2017). doi: 10.1364/OE.25.032659
[16] Ekman, B. M., Brooks, G. & Rhamdhani, M. A. Development of high flux solar simulators for solar thermal research. in Energy Technology 2015: Carbon Dioxide Management and Other Technologies (eds Jha, A. et al) (Cham: Springer, 2015), 149-159.
[17] Olympus America Inc. Resource center. athttps://lifescience.evidentscientific.com.cn/en/resources/.
[18] Beacher, J. Microscope Illumination: LEDs are the Future. Microscopy Today 19, 18-21 (2011). doi: 10.1017/S1551929511000411
[19] Li, X. W. et al. High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience 2, 646-654 (2022). doi: 10.1016/j.esci.2022.10.005
[20] Guan, H. L. et al. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag–In–Zn–S for High-CRI white light-emitting diodes. Nano Energy 67, 104279 (2020). doi: 10.1016/j.nanoen.2019.104279
[21] Wan, R. Q. et al. Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth. Photonics Research 8, 1110-1117 (2020). doi: 10.1364/PRJ.392046
[22] Shin, D. Y. et al. Ag@SiO2-embedded InGaN/GaN nanorod array white light-emitting diode with perovskite nanocrystal films. Journal of Alloys and Compounds 898, 162974 (2022). doi: 10.1016/j.jallcom.2021.162974
[23] Albeanu, D. F. et al. LED arrays as cost effective and efficient light sources for widefield microscopy. PLoS One 3, e2146 (2008). doi: 10.1371/journal.pone.0002146
[24] Kogel, A. et al. Artifact‐free objective‐type multicolor total internal reflection fluorescence microscopy with light‐emitting diode light sources-Part I. Journal of Biophotonics 12, e201900033 (2019).
[25] Ladouceur, A. M. & Brown, C. M. Fluorescence microscopy light source review. Current Protocols 1, e243 (2021).
[26] Dindas, J. et al. A voltage‐dependent Ca2+ homeostat operates in the plant vacuolar membrane. New Phytologist 230, 1449-1460 (2021). doi: 10.1111/nph.17272
[27] Peters, D. C. A comparison of mercury arc lamp and laser illumination for flow cytometers. Journal of Histochemistry & Cytochemistry 27, 241-245 (1979).
[28] Jin, D., Connally, R. & Piper J. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications. Journal of Physics D:Applied Physics 39, 461-465 (2006). doi: 10.1088/0022-3727/39/3/006
[29] Estandarte, A. K. et al. The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Scientific Reports 6, 31417 (2016). doi: 10.1038/srep31417
[30] Jin, D. Y. & Piper, J. A. Time-gated luminescence microscopy allowing direct visual inspection of lanthanide-stained microorganisms in background-free condition. Analytical Chemistry 83, 2294-2300 (2011). doi: 10.1021/ac103207r
[31] Jin, D. Y. et al. How to build a time‐gated luminescence microscope. Current Protocols in Cytometry 67, 2.22.1-2.22.36 (2014).
[32] Zhang, L. X. et al. Practical implementation, characterization and applications of a multi-colour time-gated luminescence microscope. Scientific Reports 4, 6597 (2014). doi: 10.1038/srep06597
[33] Yang, W. Z. & Chen, S. L. Time-gated fluorescence imaging: advances in technology and biological applications. Journal of Innovative Optical Health Sciences 13, 2030006 (2020). doi: 10.1142/S1793545820300062
[34] Pisarska, J. et al. Excitation and luminescence of rare earth-doped lead phosphate glasses. Applied Physics B 116, 837-845 (2014). doi: 10.1007/s00340-014-5770-9
[35] Hanaoka, K. et al. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. Journal of the American Chemical Society 129, 13502-13509 (2007). doi: 10.1021/ja073392j